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Everything should be made as simple as possible,

but not simpler.

—Albert Einstein



Contents

LIST OF FIGURES x

LIST OF TABLES xi

LIST OF ABBREVIATIONS xiii

LIST OF SYMBOLS xvi

ABSTRACT xvii

ABERGÉ xix

ACKNOWLEDGMENTS xxi

CONTRIBUTION TO ORIGINAL KNOWLEDGE xxiii

CONTRIBUTION OF AUTHORS AND AGENCIES xxv

I PROLOGUE

1 INTRODUCTION TO ULTRAFAST EXPERIMENTS 3

1.1 What are we doing? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.1.1 A Ginzburg-Landau approach . . . . . . . . . . . . . . . . . . . . . . . 8

1.1.2 The Pump-Probe Scheme . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2 Time-resolution in ultrafast electron diffraction . . . . . . . . . . . . . . . . 10

1.2.1 Impulse Response Function . . . . . . . . . . . . . . . . . . . . . . . . 10

iii



iv CONTENTS

1.2.2 Spacecharge considerations . . . . . . . . . . . . . . . . . . . . . . . 11

1.2.3 RF compression . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.2.3.1 Long-term stability of RF compression . . . . . . . . . . . 17

1.3 Apparatus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2 ELECTRON SCATTERING THEORY 27

2.1 Lippmann-Schwinger formalism . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.1.1 Electrons in free space . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.1.2 Electrons in potential . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.2 The Reciprocal Lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2.1 Bragg’s law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.2.2 Ewald sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.3 Scattering cross section . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.4 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

II AN AB-INITIO VIEWOF ULTRAFAST SCATTERING AND DYNAMICS

3 DENSITY FUNCTIONAL THEORY 41

3.1 Electronic band structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.1 Maximally Localized Wannier Functions . . . . . . . . . . . . . . . . 45

3.2 Vibrational dispersion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Electron-Phonon Coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4 AB-INITIO DYNAMIC THEORY 51



CONTENTS v

4.1 Two-temperature Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.2 Nonthermal Lattice Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.3 Time-dependent Boltzmann Equation . . . . . . . . . . . . . . . . . . . . . . 55

4.3.1 Electron-phonon coupling revisited . . . . . . . . . . . . . . . . . . . 56

4.3.2 Phonon-phonon coupling . . . . . . . . . . . . . . . . . . . . . . . . . 58

4.3.2.1 Relaxation time approximation . . . . . . . . . . . . . . . 59

4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5 FIRST-PRINCIPLES APPROACH TO UED 63

5.1 Quantum field theoretic approach to vibrations on a lattice . . . . . . . . . 63

5.1.1 Second quantization of lattice waves . . . . . . . . . . . . . . . . . . 64

5.1.2 Scattering amplitude . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Exact evaluation of ensemble averages . . . . . . . . . . . . . . . . . . . . . 70

5.3 Special Displacement Method . . . . . . . . . . . . . . . . . . . . . . . . . . 73

III TWO-DIMENSIONAL TRANSITIONMETAL DICHALCOGENIDES

6 THE HEXAGONAL MIRACLE 79

6.1 Material properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Electronic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

6.3 Excitons and Trions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

7 PHOTOEXCITED MOS2 91

7.1 Bragg dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

7.1.1 The use of monolayer in a heterostructure . . . . . . . . . . . . . . . 91



vi CONTENTS

7.1.2 Renormalized Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . 94

7.1.3 Mean-squared displacements . . . . . . . . . . . . . . . . . . . . . . . 96

7.1.4 Cooling dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.2 Diffuse Dynamics at High Symmetry Momenta . . . . . . . . . . . . . . . . 103

8 PSEUDO-ANGULAR MOMENTUM AND EFFECTS OF CIRCULAR DICHROISM 109

8.1 Spin- and valleytronics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

8.2 Scattering Selection Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

8.3 Valley-selective exciton generation and depolarization . . . . . . . . . . . . 119

8.4 Pseudo-angular momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

8.5 Generation of Chiral phonons . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.6 Valley-selective Diffuse Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . 127

8.7 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

IV POLARONICMATERIALS

9 TO THE HARMONIC APPROXIMATION AND BEYOND 137

9.1 Electronic properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

9.1.1 Crystallographic properties . . . . . . . . . . . . . . . . . . . . . . . 143

9.2 Previous Research to Date . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

10 POLARON-DIFFUSE SCATTERING 147

10.1 A DFT approach to polarons . . . . . . . . . . . . . . . . . . . . . . . . . . 149

10.2 Diffuse-scattering signatures of polarons . . . . . . . . . . . . . . . . . . . . 152



CONTENTS vii

10.2.1 Relation to the polaron envelop function . . . . . . . . . . . . . . . . 153

10.3 Polarons in Lithium Floride . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

10.3.1 Polaron-Diffuse Scattering in LiF . . . . . . . . . . . . . . . . . . . . . 157

10.4 Investigation of polarons in Pnma SnSe . . . . . . . . . . . . . . . . . . . . . 163

10.5 Dissecting EPC in Pnma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

10.6 Anharmonic coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

10.6.1 Expanding anharmonicity to the fourth order . . . . . . . . . . . . . 175

10.6.2 Anharmonicity in SnSe . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

10.7 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

V EPILOGUE

11 CONCLUSION 183

A APPENDIX - MULTIPLE SCATTERING CROSS SECTION 185

B APPENDIX - EPC AND ANHARMONIC WEIGHTS IN SNSE 187



List of Figures

1.1 Order parameter dynamics in Ginzburg-Landau theory . . . . . . . . . . . 9

1.2 Pump-probe resolution as a function of IRF . . . . . . . . . . . . . . . . . . 12

1.3 Schematic of RF pulse compression . . . . . . . . . . . . . . . . . . . . . . . 18

1.4 The schematic of the ultrafast electron column at McGill University . . . . 20

1.5 Frequency comb from a modelocked oscillator . . . . . . . . . . . . . . . . 23

1.6 Schematic of the compression cavity . . . . . . . . . . . . . . . . . . . . . . 24

2.1 2D reciprocal lattice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2 Bragg’s Law . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.3 Ewald Sphere . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Comparison of different lattice dynamics models . . . . . . . . . . . . . . . 61

5.1 Visualization of the Campbell-Baker-Hausdorff theorem . . . . . . . . . . 66

5.2 Q partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.1 Broken inversion symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6.2 1L-MoS2configuration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

6.3 Available phonon-assisted relaxation pathways . . . . . . . . . . . . . . . . 88

6.4 Feynman diagram of the Bethe-Salpeter Equation for excitons . . . . . . . 90

7.1 Substrate-background subtraction . . . . . . . . . . . . . . . . . . . . . . . 94

7.2 Photocarrier-phonon equilibration via Bragg peak dynamics in 1L-MoS2 . 97

7.3 1D Heat Diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

7.4 Momentum-resolved phonon re-equilibration dynamics . . . . . . . . . . . 104

7.5 Comparison of MSD and K dynamics . . . . . . . . . . . . . . . . . . . . . . 105

8.1 PAM conserving intervalley carrier scattering and ultrafast phonon diffuse

scattering measurements in 1L-MoS2 . . . . . . . . . . . . . . . . . . . . . . 118

viii



LIST OF FIGURES ix

8.2 Real-space representation of chiral phonons . . . . . . . . . . . . . . . . . 125

8.3 Chiral diffuse intensity dichroism . . . . . . . . . . . . . . . . . . . . . . . . 130

8.4 Bulk versus monolayer scattering . . . . . . . . . . . . . . . . . . . . . . . . 132

9.1 zT of SnSe versus temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 138

9.2 Atomic configurations of SnSe . . . . . . . . . . . . . . . . . . . . . . . . . . 141

9.3 Electronic band structures of SnSe . . . . . . . . . . . . . . . . . . . . . . . 142

10.1 Workflow for practical polaron calculations . . . . . . . . . . . . . . . . . . 151

10.2 Schematic of atomic displacements for nonequilibrium configurations . . 154

10.3 Electronic and vibrationalmomentum-resolvedweights needed for polaron

formation according in LiF . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

10.4 Makov-Payne extrapolation of polaron formation energies in LiF . . . . . 159

10.5 The polaronic wavefunctions of the hole and electron polarons in LiF . . 160

10.6 Atomic displacements of the hole and electron polarons in LiF . . . . . . . 161

10.7 Polaron-diffuse scattering in LiF . . . . . . . . . . . . . . . . . . . . . . . . . 162

10.8 Electronic and vibrationalmomentum-resolvedweights needed for polaron

formation according in SnSe . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

10.9 The polaronic wavefunctions of the hole and electron polarons in SnSe . 165

10.10 Polaron scattering in the room temperature phase of SnSe . . . . . . . . . 166

10.11 Representative polaron displacements in SnSe . . . . . . . . . . . . . . . . 168

10.12 Average EPC weighting for intraband scattering . . . . . . . . . . . . . . . 171

10.13 EPC-weighted differential diffuse scattering . . . . . . . . . . . . . . . . . . 172

10.14 Phonon dispersion of SnSe . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

10.15 Anharmonic phase spaces in SnSe . . . . . . . . . . . . . . . . . . . . . . . . 179

B.1 EPC weights for intravalence hole scattering across the BZ . . . . . . . . . 188

B.2 Anharmonic phonon lifetimes across the BZ . . . . . . . . . . . . . . . . . . 189

B.3 Three-phonon contribution to anharmonic phonon lifetimes across the BZ 190



x LIST OF FIGURES

B.4 Four-phonon contribution to anharmonic phonon lifetimes across the BZ 191

B.5 Isotope contribution to anharmonic phonon lifetimes across the BZ . . . 192

B.6 Weighted three-phonon phase space in SnSe . . . . . . . . . . . . . . . . . 193

B.7 Weighted four-phonon phase space in SnSe . . . . . . . . . . . . . . . . . . 194



List of Tables

7.1 Extracted time constants for cooling / heating dynamics in 1L-MoS2 . . . 98

7.2 Phonon-phononequilibrium relaxation times at room-temperature in 1L-MoS2106

8.1 Orbital representations of 1L-MoS2 . . . . . . . . . . . . . . . . . . . . . . . 111

8.2 Spin-conserving selection rules of the C3h point group . . . . . . . . . . . . 116

8.3 Chirality of phonons in 1L-MoS2 . . . . . . . . . . . . . . . . . . . . . . . . . 127

10.1 The associated energies of each polaron in LiF . . . . . . . . . . . . . . . . 157

10.2 Various energies of each polaron in room temperature SnSe . . . . . . . . 164

10.3 Values of the atom-resolved anisotropic displacement tensor in Pnma SnSe 169

xi





List of Abbreviations

1L monolayer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

2D two dimensional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

ARPES angle-resolved photoemission spectroscopy . . . . . . . . . . . . . . . . . 144

BBO β-BaB2O4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

BE Bose-Einstein . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

BSE Bethe-Salpeter equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

BZ Brillouin zone . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

CPA chirped pulse amplifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

CVD chemical vapour deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

CW continuous wave . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

DFPT density functional perturbation theory . . . . . . . . . . . . . . . . . . . . . 127

DFT density functional theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

DOS density of states . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

ED electrochemical deposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

EOM equation of motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

EPC electron-phonon coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

ETL electron transporting layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

FD Fermi-Dirac . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

FOM figure-of-merit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

GGA generalized gradient approximation . . . . . . . . . . . . . . . . . . . . . . 95

HTL hole transporting layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

IR irreducible representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

IRF impulse response function . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

LBJ Laval-Born-James . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

LDA local density approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

xiii



xiv LIST OF ABBREVIATIONS

MBE molecular beam epitaxy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

MLWF maximally-localized Wannier functions . . . . . . . . . . . . . . . . . . . . . 45

MSD mean-squared displacement . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

NLM nonthermal lattice model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

PAM pseudo-angular momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

PBE Perdew-Burke-Ernzerhof . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

RTA relaxation time approximation . . . . . . . . . . . . . . . . . . . . . . . . . . 56

SDM special displacement method . . . . . . . . . . . . . . . . . . . . . . . . . . 73

SNR signal-to-noise ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

SOC spin-orbit coupling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

STEM scanning transmission electron microscopy . . . . . . . . . . . . . . . . . . 5

TDBE time-dependent Boltzmann equation . . . . . . . . . . . . . . . . . . . . . . 55

TEM transmission electron microscopy . . . . . . . . . . . . . . . . . . . . . . . . 4

TMD transition metal dichalcogenide . . . . . . . . . . . . . . . . . . . . . . . . . 80

TRS time-reversal symmetry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

TTM two temperature model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

UED ultrafast electron diffraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

UEDS ultrafast electron diffuse spectroscopy . . . . . . . . . . . . . . . . . . . . . 24

vdW van der Waals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80



List of Symbols

Physics Constants

ǫ0 Vacuum electric permittivity

8.854 187 · 10−12 F-m−1

me Electron rest mass

9.109 383 · 10−31 kg

c Speed of light in a vacuum

299 792 458m-s−1

h Planck constant

6.626 070 15 · 10−34 J-Hz−1

Number Sets

Z Integer numbers

C Complex numbers

R Real numbers

Indices

α, β, γ Cartesian indices

κ, i, j, k Atomic indices

ν Phonon branch index

h, k, l Miller indices

m, n Electronic band index

p Unit cell index in supercell

Momentum-space Quantities

ℵqν Phonon momentum- and branch-

resolved value of the quantity ℵ

ℵnk Electron momentum- and band-

resolved value of the quantity ℵ

G Reciprocal lattice vector

H Bragg peak

k Electron momentum

Q Scattering vector / momentum

transfer

q Phonon momentum

Real-space Quantities

τpκ Atomic position of the κth atom in

the pth unit cell

εqνκ Momentum- and branch-resolved

atomic eigendisplacement of the

κth atom

x Real space 3-vector

xv

https://physics.nist.gov/cgi-bin/cuu/Value?ep07Csearch_for=permitivitty
https://physics.nist.gov/cgi-bin/cuu/Value?me
https://physics.nist.gov/cgi-bin/cuu/Value?c
https://physics.nist.gov/cgi-bin/cuu/Value?h


xvi LIST OF SYMBOLS

∆τpκ Atomic displacement of the κth

atom in the pth unit cell

Miscellaneous

ℓ Azimuthal angular momentum

quantum number

≡ “is congruent to”

ℑ Imaginary component of a com-

plex quantity

µ Chemical potential

µk Relative atomic mass

∇ Laplacian operator∇ , ∑i ∂2
ii

ω Angular frequency

ΩBZ Dimensionality-based measure of

the BZ

φ, ϕ Phase

ℜ Real component of a complex

quantity

θ Angle

, “is defined to be equal to”

ε Electronic energy

f Radial frequency

mk Absolute atomic mass

s Spin quantum number



Abstract

The development of new and interesting technologies is one of the strongest inspiration

for materials science, from heat shields for spacecraft re-entering Earth’s orbit, to smaller

transistors for use in mobile devices, to new light emitting diodes for television screens.

To understand novel materials, though, requires equally sophisticated tools with which

one can characterise them. The structure of a material, and the ways in which the

structure responds to various stimuli, is often difficult or impossible to directly observe on

the time- and length scales most relevant to the changes. To this aim, this thesis expands

on the usage of ultrafast elastic and inelastic scattering as ameans throughwhich one can

understand not only the dynamics of a crystal’s lattice, but also the electronic system, and

the formation dynamics of more complicated collective excitations and quasiparticles

like phonons and polarons.

I start by showing that on state-of-the-art instruments, ultrafast electron diffuse

scattering is realizable on systems at the limits of dimensionality, namely 2D samples.

What’s more, having shown that such experiments are feasible, I, with collaborators,

develop the recently posited theory needed to simulate and quantitatively replicate

the experimental signatures found in these experiments. We do this on monolayer

molybdenum disulfide, a system with complicated many-body interactions, strongly

susceptible to its environment, to illustrate the power of the theoretical results developed.

Knowing that our lab can make such sensitive measurements, I extend the current

theory to illustrate how these experiments are, while blind to the electronic system of a

material, still able to sensitively detect spin- and valley-tronic effects like chiral phonons

in materials where they are present.

Finally, to further illustrate the utility of inelastic diffuse scattering, I reconcile con-

flicting accounts of previously acquired scattering data on the thermoelectric material

tin selenide, where these hypocritical interpretations are adjoined by the discovery

xvii



xviii ABSTRACT

of two independent processes in the material: an electron-phonon coupling strength

with a unique momentum-space signature, as well a strongly anharmonic lattice that

results in pronounced three-phonon and four-phonon scattering processes. We validate

these conclusions by developing the novel formalism of polaron diffuse scattering in the

benchmark wide-gap ionic insulator lithium fluoride.



Abergé

Le développement de technologies nouvelles et intéressantes est l’une des plus grandes

sources d’inspiration pour la science des matériaux, qu’il s’agisse de boucliers thermiques

pour les vaisseaux spatiaux rentrant en orbite terrestre, de transistors plus petits utilisés

dans les appareils mobiles ou de nouvelles diodes électroluminescentes pour les écrans

de télévision. Cependant, pour comprendre les nouveaux matériaux, il faut des outils

tout aussi sophistiqués pour les caractériser. La structure d’un matériau et la façon

dont cette structure change en fonction de divers stimuli sont souvent compliquées à

comprendre sur les minuscules échelles de temps et de longueur des changements en

question. Dans ce but, cette thèse développe l’utilisation de la diffusion élastique et

inélastique ultrarapide comme moyen de comprendre non seulement la dynamique du

réseau cristallin, mais aussi le système électronique et des objets plus complexes tels que

les défauts localisés et d’autres quasiparticules.

Je commence par montrer qu’avec les instruments les plus modernes, la diffusion

diffuse ultrarapide d’électrons est réalisable sur des systèmes à la limite de la dimension-

nalité, à savoir des échantillons 2D. De plus, après avoir montré que de telles expériences

sont réalisables, je développe, avec des collaborateurs, la théorie récemment postulée

nécessaire pour simuler et reproduire quantitativement les signatures expérimentales

trouvées dans ces expériences. Nous le faisons sur le disulfure de molybdène mono-

couche, un système avec des interactions complexes à plusieurs corps, fortement sensible

à son environnement, afin d’illustrer la puissance des résultats théoriques développés.

Sachant que notre laboratoire peut effectuer des mesures aussi sensibles, j’élargis la

théorie actuelle pour illustrer comment ces expériences, bien qu’aveugles au système

électronique d’un matériau, sont toujours capables de détecter de manière sensible les

effets troniques de spin et de vallée tels que les phonons chiraux dans les matériaux où

ils sont présents.
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Enfin, pour illustrer davantage l’utilité de la diffusion diffuse inélastique, je réconcilie

des comptes-rendus contradictoires de données de diffusion acquises précédemment

sur le matériau thermoélectrique séléniure d’étain, où ces interprétations hypocrites sont

adjointes à la découverte de deux processus indépendants dans le matériau : une force

de couplage électron-phonon avec une signature unique de l’espace-temps, ainsi qu’un

réseau fortement anharmonique qui entraîne des processus de diffusion prononcés à

trois et quatre phonons. Nous validons ces conclusions en développant le nouveau

formalisme de la diffusion diffuse de polarons dans l’isolant ionique à grand écart de

référence qu’est le fluorure de lithium.
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1
Introduction to Ultrafast Experiments

“Intellectual men who quickly wolf down whatever nourishment
is necessary for their bodies with a kind of disdain
may be very rational and have a noble intelligence,

but they are not men of taste.”
—Charles-Augustin de Coulomb

The history ofmaterial science is a continually evolving story, dating back to antiquity.

It is so central to our understanding of the developement of the modern age that the

critical epochs in history are named after the advances in materials during that time (the

Stone age, Bronze age, the Iron age, the Golden1 age, etc.). For most of scientific history,

the choice of material for a given application was based on external properties: gold is

shiny, gemstones are pretty, etc. However, with the advent and subsequent development

of condensed matter physics, experimentalists began to probe materials for an ever

increasing variety of reasons: how readily electrons drift through the material when an

electric field is applied, how tightly atoms are bound together, howwilling a material is to

ionize, and more, adding more complex descriptions of materials, like superconductivity.

Most critically, we have also begun to consider a final aspect of materials: their size.

Given the ever decreasing length scales in which novel materials of interest lie, the

approaches needed to even view these materials were forced to improve. Optical mi-
1This is the familial name for the age of modern computing.
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croscopy, the oldest of the scientific imaging techniques originating in Europe in the

early 1600’s [1], used to be entirely suffient for a quantitative record of the behaviour

of a sample. From the inspection of metal welds, to the counting of cultured cells in a

Petri dish, it was amazing how far the humble compound microscope brought science.

Yet, there are hard limits to these devices: (i) only dark or refractive objects can be well

imaged, and (ii) diffraction-limited viewing dramatically affects the magnification such

microscopes can provide. Even neglecting both these effects, there are fundamental

constraints on what human eyes can even detect! As scientific inquiry surpassed the

length and energy scales afforded by the technology of the time, new ways to “see” had

to be developed.

While many other flavours of optical microscopy had been invented to combat these

issues, or to circumvent them all together, the fundamental limit that visible light can only

provide around 0.2 µmof spatial resolution stands the largest of obstacles to overcome in

our quest to see smaller and smaller. The ability to see onmacro-, micro-, nanoscales and

beyond came with the advent of the electron microscope. Sparked by the observation

[2] and subsequent theoretical explanation [3] of the photoelectric effect from metals,

the electrons that were “ripped” from the metal surface were placed inside electric fields

of static voltage that would provide an acceleration s. t. the de Broglie wavelengths of the

electrons were smaller than the diffraction limit of optical microscopy. This opened up

new avenues of exploration for science. This wavelength, determined by the acceleration

voltage, can be written:

λdB =
hc√

eV(2mec2 + eV)
. (1.1)

which, for a typical TEMvoltageof 100 keV is 3.87picometers. While the precise historical

origins of the electron microscope are unclear [4], the advantages it brings are not. In ad-

dition to spatial resolutionwith atomic granularity, the penetration depths of the electron

beams began exceeding the thickness of samples, allowing for the development of trans-

mission electron microscopy (TEM). This approach focuses an electron beam with suffi-
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cient energy through a sample.

An illustration of a four-panel

animator, taken from [5].

The transmitted electrons are offset in phase and en-

ergy relative to before the illumination of the sample.

This beam, now rich in information about the sample,

is magnified and imaged on a viewing screen, usually a

phosphor scintillator. By rastering the beam over the

surface, known as scanning transmission electron mi-

croscopy (STEM), we can even further enrich the images

obtained in such an approach. Lo and behold, there is

now an approach for achieving sub-atomic spatial reso-

lution. With such an advance in microscopy, the upper

bound on what we could see was quickly dissolving.

The ability to inspect such small length scales opened up questions about dynamics:

now that we can see small, can we see fast? While equilibrium views of a material are

valuable, and not always easily understood, there is an entirely newdimension to consider

in the study of materials: time. The typical picture for time-resolved studies originates

with the zootrope, a device used to create “animations” by quickly displaying sequential

frames to create the illusion of continuous motion.

The question of “can we peak into fast-happening processes” arises pretty naturally

from the study of the material world; nothing is static. Whether one’s concerned with the

passage of time on gargantuan scales like cosmology or evolution, or on much quicker

scales like the morning commute to the lab, time consistently marches forward, and the

world with it. The smaller length scale to which one investigates, the quicker things tend

to move, and the harder it gets to “see”.
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1.1 WHAT ARE WE DOING?

The goal of this work is to unravel the behaviour of materials on some of the smallest

length and time scales modern transmission electron microscopy can afford, developing

on and extending current theories of (in)elastic scattering to the 2D limit and beyond. We

show that such extensions are physically realizable. We aim,more specifically, to untangle

the complex (potentially many-body) interactions found in exotic quantum materials,

with a focus on the coupling of the charges inside the material to its atomic arrangement.

This so called electron-phonon coupling (EPC) is a central concern in materials physics

generally, providing the fundamental origin of phenomena as diverse as conventional

superconductivity [6], charge-density waves [7] and soft-mode phase transitions [8],

playing an important role in determining both charge and thermal transport properties.

This thesis aims to be a “how-to” guide to understand phonons, their dynamics, and EPC

by means of ultrafast diffuse scattering in atypical condensed matter systems, starting

from elemental quantum mechanics, and progressing to more advances concepts such

as anharmonicity and the breakdown of the phonon formalism.

Assuming that, at the worst case, atoms only vibrate with the equivalent energy of

room temperature (300K≃ 25meV), this still gives us a vibrational period of (6THz)−1 ≃

0.16picoseconds (ps, 10−12 s). This means that in order to view atomic motion, experi-

ments require a time-resolution on the order of femtoseconds (fs, 10−15 s). For electron

microscopy, this means that the imaging electrons need to be emitted in pulses, with

each pulse having femtosecond time duration. Yet, as read-out times of electronics

cannot be this quick, we apply integration techniques as we describe in Section 1.1.2.

Such experiments that can achieve these time resolutions are given the moniker ultrafast.

While other approaches focus on imaging in real space, like the compound microscope,

we focus herein on the corresponding diffraction. This is a momentum-resolved view of

the same information, with an interpretation more closely tied to the scattering processes
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inside the material.

Definition 1 (Diffraction). The change in direction (momentum) and energy of the

electrons in a beam as a result of scattering from the instantaneous interatomic potential

of a material. The intensity of electrons at a given scattering angle and energy at a

given plane of (x, y) coordinates is what is known as a diffraction pattern. Recording

these changes in energy and momentum close to the scattering plane is called Fresnel

diffraction, while at larger distances is a Fraunhofer diffraction pattern.

Historically, the first attempts to understand quantumdynamics came fromSchrödinger’s

equation, the first quantitative relationship between the intrinsic energies of a system

Ψ to its time evolution. For a matrix A residing in the Lie algebra of a complex Hilbert

space2 g(n, C), for ψ0 ∈ C, the function Ψ(t) , etAψ0 for all times t ∈ R is the unique

solution of the differential equation:

dΨ(t)

dt
= AΨ(t) (1.2)

for Ψ(0) = ψ0. Setting A , −iĤ/h̄ brings us to Schrödinger’s equation:

ih̄∂tΨ(x, t) = ĤΨ(x, t) (1.3)

where Ĥ is the operator called the Hamiltonian describing the energy of the system, and

(x, t) describes the space and time coordinates of the system. Such a description proved

extremely powerful in answering many open questions in quantum mechanics at the

time, and is the lens through which we can understandmost of the phenomena in this

work. We develop further the Schrödinger picture of Eq. (1.3) in Section 2.1.

2Briefly, the space Cn becomes a Hilbert space with the conjunction of the inner product 〈ϕ|ψ〉 ,
∑

N
j=1(ϕj)†ψj and the norm ||ψ|| ,

√
〈ψ|ψ〉. The Lie algebra of this space is the coordinate space represen-

tation of the real observables in the complex Hilbert space, see [9].
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1.1.1 A Ginzburg-Landau approach

In these experiments, a material is photoexcited with an ultrafast optical pulse, which

induces changes in the electronic and structural properties of the material. The state of

the material across its phase diagram can be described by an order parameter.

Definition 2 (Order Parameter). Describes the degree of order across boundaries in the

phase diagram of a given system. It is common for the order parameter to be null for

one phase (typically above the critical point), and range continuously to unity elsewhere

in the phase diagram.

The study of this order parameter near a phase transition is called Ginzburg-Landau

theory, which, while historically applied first to superconducting systems, yields mean-

ingful insights into the material systems studied in these works3. The extension of the

theory to the time domain, thus studying the dynamics of the order parameter following

photoexcitation, for example, is very useful to understand ultrafast scattering experi-

ments.

When we photoexcite strongly, the material is placed far from equilibrium. We can

drive phase transitions and change the properties of the material dramatically by the

optical pulse, initiating nonequilibrium dynamics with a laser pulse by impulsively driving

carrier excitations or phonon excitations. Intuitively, the order parameter of a system

can be thought to lie, in equilibrium, at a minimum in the free energy landscape. Pho-

toexcitation will “roll the ball up the hill” to place the order parameter elsewhere in

free energy over time. Once excited, the system is then free to relax to other minima

in free energy. The existence of multiple minima is, in general, possible, allowing for

competing ground states, or even metastable phases, represented by local minima in

the free energy landscape that are not thermally accessible, and can only be reached

through techniques like photoexcitation. These dynamics are illustrated in Figure 1.1,
3This is a complex topic on its own, and lies outside the scope of this thesis. We mention only the key
aspects of the theory as it pertains to the studies herein.
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FIGURE 1.1: Order parameter dynamics in Ginzburg-Landau theory. Photoexcitation by the optical pulse
will shift the free energy surface as a function of time following photoexcitation. This adjustment of the
free energy allows for the order parameter to begin relaxing to different minima than thermal equilibrium,
potentially relaxing to competing global minima (ground states), or to metastable phases that do not exist
on equilibrium phase diagrams. Figure created for Ref. [10].

and as the order parameter moves throughout the free energy surface, we follow the

resulting nonequilibrium lattice dynamics with the observables available through elec-

tron scattering, namely lattice structure and phonon distribution. In Chapter 2, we will

discuss further how ultrafast scattering recovers these observables.

1.1.2 The Pump-Probe Scheme

The pump-probe scheme is a powerful experimental spectroscopic approach that relies

on two key ingredients that are called, understandably, the pump and the probe. The

pump is the method through which the material is excited, often optical. The probe
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is the method through which the instantaneous state of the system is recorded. While

optical in optical spectroscopy, in this specific application, the probe corresponds to the

pulse train of ultrafast electron or x-ray bunches. The heart of the idea is the following:

expose the system to the excitation, then after some time delay, image the state of the

system. By iterating over the time delays, and therefore taking many images, one is able

to reconstruct a “movie” of the system dynamics, in much the same way as the zootropes

of centuries past. The utility of this approach is that it discretizes the continuous-

time behaviour of the system response in a way that is repeatable, offering multiple

measurements of the system response at every time delay, thus improving data quality.

To this point, by “repeatable” we mean that the system is assumed to be re-equilibrated

before the arrival of the next pump pulse, allowing for equivalent measurements every

pump-probe cycle.

1.2 TIME-RESOLUTION IN ULTRAFAST ELECTRON DIFFRACTION

Theoretical developments made in this thesis that rely on any “ultrafast” descriptions

would seem highfalutin if there was no experimental means through which one could

probe such theories. To this point, we briefly synopsize what it means for ultrafast

electron diffractometers to have short time resolution, as well as the means through

which short time resolution is achieved4.

1.2.1 Impulse Response Function

We start by considering the impact of the instrumentation itself on the time resolution

of the ultrafast electron diffraction (UED) experiment, quantifying its response as a

function of time with the impulse response function (IRF). Unfortunately, every aspect of
4The ability to produce ultrafast packets of x-rays is, stated without proof, possible, and presents various
pros and cons compared to electron bunches, but is outside the pervue of this work. Enthused readers
are encouraged to read Ref [11].
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the measurement process does not happen instantaneously. For example, the electron

bunches are packaged into discrete pancakes, Gaussian distributed in time, with finite

spatial dimension. Further, eachof the electro-optics used tomanipulate such an electron

beam have finite response times, increasing the temporal spread of the system IRF.

At this point, we have multiple responses to consider: (i) the instrument, (ii) the

probe, (iii) the pump, and (iv) the sample itself. By pumping the sample at time t = 0,

and by probing at some time-delay t = τ, UED measures the order parameter of the

system as a function of time via the observables of UED. The measured function is an

effective response owing to the finite response of the instrument, corresponding to a

convolution between the instrument IRF and the true system response. The illustration

of the pump-probe scheme in the repeatable UED experiment is shown in Figure 1.2.

1.2.2 Spacecharge considerations

To achieve ultrafast time resolution via electron diffraction, the imaging electron bunch

must be temporally focused s. t., at the time it arrives at the sample, the bunch is as short

in duration as possible. The unfortunate complication here is that, due to the spatial

localization of the electrons, the internal Coulomb potential energy can be very large in

ultrashort electron bunches. Left alone, this potential energy quickly gets converted to

kinetic energy, resulting in a “space-charge explosion” that rapidly reduces the available

time resolution of the probe. One can easily imagine a few factors that will affect the

rate of this explosion:

1. The beam current / number of electrons per bunch, as less bodies in the multi-body

interactions will reduce the upper limit on the interal Coulomb potential energy

2. The brightness and collimation of the beam, as in theory it is possible to produce

a “pancake” of charge (dimensions transverse to the direction of propagation are

much larger than the dimension in the direction of propagation), s. t. the electrons

are only “close” in a single dimension
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Sample response Pump Probe

0 1
Laboratory time [T]

0 1
Time-delay [ ]

IRF

FIGURE 1.2: Pump-probe resolution as a function of IRF. The plots illustrate increasing values of pump,
probe, and instrument IRF in the direction of the arrow. It is clear that for large values of IRF, fast system
responses become entirely impossible to map out with sufficient resolution, necessitating that for quick
phenomena that all contributions must be minimized, while for slow effects (picosecond time scales) high
IRF may be sufficient. Adopted from [12].

• For example, at 100 keV, 100 fs bunches have transverse extents of ∼ 3mm,

with an axial dimension of 15 µm

3. The average energy of the electron bunch, since at relativistic energies the electrons

will see the retarded potential of the other charges less than at non-relativistic

energies

To quickly see how these factors impact the electrostatic potential energy (U in the lab

frame,U′ in the rest frame of the electron bunch), we can define the internal Coulomb
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potential energy:

U′ = e2

(
N

M

)2 M−1

∑
i

M

∑
j>i

1

|r′i − r′j|
(1.4)

wherewe haveN electrons (thus total chargeQ = −Ne),Mmacroparticles fromwhichwe

sample to determine the potential energy5, and we assume the beam is monochromatic

with a single relativistic factor γ. For high M, this will converge to a simple geometric

parameter (the average inverse distance between electrons in the bunch relative to

the center of mass of the bunch), with σ , 〈1/r′ij〉, and thus U′ = Q2σ. Taking r′ij ,
[
(x′i − x′j)

2 + (y′i− y′j)
2 + (z′i− z′j)

2
]1/2, and assumingGaussian distribution in each spatial

dimension, namely 〈(z′i − z′j)
2〉 = σ′2z etc., it can be shown that [13] 〈1/r′ij〉 = ln(σ′z/σr)/3σ′z.

Note 1.1!
This can also be seen more exactly by the more rigorous treatment of spacecharge

forces which utilizes what is known as the KV distribution, fromwhich the equation

of motion for the bunch envelope can be written as:

∂2
ttσx + k2

x(z)σx −
ǫ2

n

γ2σ3
x
− I

γ3 IA(σx + σy)
= 0 (1.5)

with kx , ax/γβ2c2m being “space-charge factor” in x, and ǫ the RMS beam emit-

tance [14].

We can therefore write the average potential energy (relative to the rest mass) as:

u′ =
U′

Nmec2
≈ I

IAγ
ln(γσz/σr) (1.6)

where I = Qc/
√

2πσz is the peak beam current, and IA = mec
3/e is the Alfvén current.

The critical feature here is two fold: (i) the upper limit is directly proportional to the

peak beam current (and thus number of electrons), and (ii) it is inversely proportional to

the beam energy (via the Lorentz factor γ). This suggests that, for high electron count
5While a seemingly unnecessary complication, the introduction of macroparticles into the description of
space-charge effects is critical for the simulation of high bunch charge pulses, and therefore our simulations
of the UED beamline at McGill University, making it a worthwhile discussion.
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low-energy bunches, the probing electron beam will be susceptible to the highest space-

charge forces, which is unfortunately the regime in which most UED setups operate. It is

therefore necessary, for electron beamswith nonrelativistic energies, to have a secondary

mechanism through which the space-charge forces are corrected, providing a temporal

focus to the electron bunch and thus short time resolution.

1.2.3 RF compression

There are multiple schemas that have been developed to combat the space-charge

problem. It is worth mentioning that some research institutions elect to mute with

space-charge problem by using relativistic electron beams (〈T〉 > 1MeV), where the

facilities, power consumption, and manual labor required to maintain such a beam solve

the space-charge problem with cash. Barring this exception, the three most frequently

used techniques to combat the Coulomb explosion are:

• electrostatic mirrors [15], a simple approach where an electric field is generated

s. t. the electrons will experience a force roughly antiparallel to the direction of

incidence

– The penetration depth of the higher energy electrons in the bunch will be

greater than the lower energy electrons, resulting in a tuning of bunch duration

at some focal point in reflection of the electrostatic mirror

• achromatic bending magnet [16], providing the same time-of-arrival correction as

the electrostatic mirror except by adjusting the time of flight of various energy elec-

trons via a displacing magnetic field that translates the electron beams tranverse

to the direction of propagation and then back again6

• RF fields, where the correcting electric field is axial (inline with the beam)
6Although, this technique works only for relativistic electron beams.
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We focus herein on the RF compression approach, as it, in addition to being the approach

we have developed, overcomes the tedious alignment of the electrostatic methods and

provides robust long-term stability as we describe.

In the absence of external fields, it can be shown that an ultrafast electron bunch will

autoinduce a linear chirp in its axial momentum [17] (c.f. Figure 1.3), which will be the

dominant manifestation of the Coulomb repulsion on the distance scales relevant here.

To correct for this linear chirp in momentum, one should ideally apply an electric field

that satisfies the following properties:

• The ith electron with z′i > 〈z′〉 (and therefore higher energy) will see a negative

change in axial momentum

• The jth electron with z′j < 〈z′〉 (and therefore lower energy) will see a positive

change in axial momentum

• The field should be entirely axial (Er = 0) in order to act properly as a compression

field and not impact the beam emittance

• The change in axial momentum ∆pz should be much less than the average axial

momentum of the bunch 〈piz〉 to not change the energy of the beam

• Each electron bunch should sample only one oscillation of the compression field

This inversion of the axial momentum chirp with such a field can be achieved with the

TM010 standing mode, whose field expressions can be written in cylindrical coordinates

as the solution to the Maxwell’s Equations in a pillbox cavity:

Ez = E0 J0 (x01r/R) sin{ω010t + ϕ} (1.7a)

Bφ = E0 J1 (x01r/R) cos{ω010t + ϕ}/c (1.7b)

where r is the radial coordinate, R the radius of the pillbox cavity, E0 the field strength, and

c the speed of light. The radial dependence is entirely captured by the Bessel functions



16 INTRODUCTION TO ULTRAFAST EXPERIMENTS

of the first kind Jn, with the corresponding first zero of the Bessel function of the first

kind x01 ≈ 2.4048, from which we can write an expression for the resonant frequency

of this mode ω010 = kc = x01c/R. To take into account the finite axial dimension of any

real cavity, we provide a modulation of the axial electric field strength with the double

normalized erf acceleration profile outside the pillbox of length L:

E0 −→ E0(z) =
E0

2erf(L/2
√

2)

{
erf
(

z + L/2√
2

)
− erf

(
z− L/2√

2

)}
. (1.8)

which is the most accurate approximation with closed-form analytic expression, allowing

for easy integration into numerical simulation techniques.

It is now clear how we can design such a cavity to perform pulse compression using

the TM010 mode. Firstly, create a cavity with suffient radius s. t. the field oscillation

frequency is much quicker than the arrival frequency of the electron bunches; each bunch

must sample only the linear regime of the sinusoidal driving field. Secondly, choose a

phase offset ϕ (relative to the peak electric field strength) s. t. the electrons in the front of

the bunch see the a negative electric field (thus providing positive work to the electrons

and negative axial momentum offset), and that electrons in the back see an accelerating

positive electric field. This can be explicitly seen by identifying the momentum transfer

from the cavity to the electrons at an arrival time t as:

∆pz = −e
∫

R

Ez(z, t) dt = − e

c〈βz〉
∫

R

E0(z) sin

(
ω010(z− 〈zi〉)

c〈βz〉
+ ϕ

)
dz

vz≈c〈βz〉
= − e

vz

∫

R

E0(z)

[
cos

(
ω010z

vz

)
cos

(
−ω010〈zi〉

vz
− ϕ

)

− sin

(
ω010z

vz

)
sin

(
−ω010〈zi〉

vz
− ϕ

) ]

= − e

vz
E0Lcav

[
cos ϕ cos

(
ω010〈zi〉

vz

)
+ sin ϕ sin

(
ω010〈zi〉

vz

)]

≈ − e

vz
E0Lcav

[
cos ϕ +

ω010〈zi〉
vz

sin ϕ

]
(1.9)

where we apply the coordinate transform t = (z−〈zi〉)/2c〈βz〉, all the unprimed variables

denote either the axial velocity c〈βz〉 or average position of the electron bunch 〈zi〉 in the
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lab frame. These two conditions require the following of the relative phase: the phase ϕ

of the compression field should be chosen s. t. the Ez(〈zi〉) = 0. We note that we have

defined the effective cavity length:

Lcav ,
1

E0

∫

R

E0(z) cos

(
ω010z

vz

)
dz (1.10)

which allows for ready determination of the focusing “power”7 P010 of such a mode,

defined as the inverse of the temporal focal distance f010:

P010 , f−1
010 = − 1

pz

∂∆pz

∂〈zi〉
=

eE0Lcavω010

mv3
z

sin ϕ . (1.11)

We can visualize the dynamics of the pulse compression in Figure 1.3. Firstly, the linearly

chirped pulse enters the cavity. Secondly, the phase has been adjusted s. t. the zero-

crossing of the electric field is at 〈zi〉. This means the fast electrons receive a negative

chirp, while the slow electrons receive a positive chirp. As the sample propagates, the

applied changes in axial momentum will correct the chirp at a particular point after

the cavity, the temporal focus, where the pulse is at its shortest duration possible. At

this point, we are essentially back to photoemission conditions, where the transverse

dimensions of the bunch are much much larger than the axial dimension.

1.2.3.1 Long-term stability of RF compression

There are a few hidden assumptions in this compression protocol. First, not only does

one need an electric signal to drive the TM010 mode that is synchronized in some way

to the arrival times of the electron bunches, but secondly, this signal must be phase

stable lest the applied chirp correction not be constant between bunches over long time

scales. To evaluate the necessary phase stability for long-term consistency of bunch

compression, we find the rate of change of the time-of-flight for the bunch as a function

7Power in the sense of a measure of ability, but not a true power in units of watt.
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RF cavity Sample

z

pz

Electric field

Shortest pulse

Ez

FIGURE 1.3: Schematic of RFpulse compression using a standingTM010mode. At various stages, the electric
field inside the cavity is rendered below to illustrate the field phase at that point in the compression. The
pulse enters the cavity s. t. E010(〈zi〉) = 0, ensuring the fast electrons see negative work to decellerate and
the slow electrons see positive work to accelerate. The cavity corrects the linear chirp in axial momentum
precisely at some point (the temporal focus) post compression. After the temporal focus, the dynamics of
the bunch are again dominated by space-charge interactions. Adopted from [12].

of driving field phase ϕ

dt

dϕ
=

dL/vz

dϕ
= − L

v2
z

dvz

dϕ
=

L

f010ω010

[
ω010〈zi〉

vz
sin

(
ω010〈zi〉

vz

)
+ cos

(
ω010〈zi〉

vz

)]

=
L

f010ω010

[
1 +

3

2
(ω010τ)2 +

1

6
(ω010τ)3 + · · ·

]
(1.12)

where τ = 〈zi〉/vz is the RMS arrival time of the electrons in the bunch in the lab frame,

aka the pulse duration. For typical S-band cavities (for example ω010 ≈ 2π × 3 GHz),

we find the first-order jitter of the compression to be 53 fs/mrad, necessitating mrad

stability of the input driving signal phase with respect to the electron pulse arrival times

for ultrafast applications.

1.3 APPARATUS

Having briefly perused the needed considerations to realize an instrument capable of

probing the theory in this thesis, the ultrafast electron diffractometer atMcGill University

that is, in principle, capable of performing such experiments is described in the following.
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Note 1.2!
The following describes the state of the instrument at the time of the experiments

performed in this work. The current state of the instrument is upgrade with respect

to many technologies.

◮ GENERATION OF ULTRAFAST PULSES

To first generate an ultrafast pulse from a continuous wave (CW) input, we utilized

the passive modelocking approach of a resonator cavity. In this approach, a saturable

absorber, which introduces loss to the intracavity radiation (large for low intensities, but

much less for high intensity short pulses), generates self-amplitude modulation of the

light inside the cavity. Therefore, a short pulse has loss modulation since the high peak

intensity saturates the absorber more than the lower intensity tails. The result is that

a circulating pulse saturates the gain to the point of compensating for the loss of the

pulse itself, and any other low-intensity light experiences more loss than gain, and is not

transmitted out of the cavity [18]. To mimic the saturable absorber in our case, we utilise

the Kerr lens modelocking approach, where the fast saturable absorber is simulated by

the Kerr lens, inducing the following change in the index of refraction:

∆n(r, t) , n2 I(r, t) (1.13)

where n2 is the nonlinear refractive index, and I(r, t) is the pulse intensity. The combina-

tion of the Kerr lens with a hard aperture inside the cavity results in a reduction in laser

mode area for high intensities at the aperature, thus becoming an artificial saturable

absorber8. We can quickly see how the self focusing works as follows:

I(x, y) = I0 exp

(
−x2 + y2

w2

)
(x2+y2)≪w2

−→ ≈ I0

(
1− 2

x2 + y2

w2

)

=⇒ n(x, y) = n + n2 I(x, y) ≈ np − ∆np
x2 + y2

w2

where ∆np , n2 I0 and np = n + ∆np.
8It is artificial in the sense that the Kerr effect does not itself produce absorption.
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Mode-locked oscillator

15 fs pulses, 5 nJ, 75 RF generation and 
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FIGURE 1.4: The schematic of the ultrafast electron column at McGill University. A modelocked oscillator
generates low-power short pulses of light that are then passed to CPA to produce high-power short pulses.
The resulting beam is sent across the table, split into a pump line that directly photoexcites the material,
and a probe line that is upconverted to UV-C light. This UV-C light is used to generate the ultrafast
electron bunches used to image the samples.

◮ AMPLIFICATION OF ULTRAFAST PULSES

Unfortunately owing to the relative tight difference in gain and loss in such a cavity in a

few passes, the output pulses from (passively) modelocked oscillators are low in power.

To this aim, we employ a chirped pulse amplifier (CPA) to amplify the ultrafast pulses.

A full description of the technology is not relevant here, but suffice to say, we use a

commercial amplified femtosecond laser system with a Ti:sapph gain medium. We use

a central wavelength of 800nm with 35 fs pulse duration, 3mJ pulse energy, at a 1 kHz

repetition rate.

◮ GENERATION OF PUMP AND PROBE BEAMS

Now having the amplified short pulses, we then split the output into two beams: the

pump and the probe beams, used to stimulate electronic transitions in the material and

image the instantaneous state of the lattice respectively. The pump beam is usually left
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as is to utilize the 800nm excitation for the sample. The probe beam, however, must be

processed in order to successfully create illumination conditions on the photocathode

to generate the ultrafast electron bunches. To this aim, we utilize the ability of nonlinear

crystals to produce higher harmonics from ultrafast pulses. First, the 800nm pulse is

incident on the first non-linear crystal β-BaB2O4 (BBO). The crystal has a second-order

χ(2) reponse, where the pulse induces a second-harmonic polarization response in the

material that then reradiates as light at twice the incident frequency:

E(2ω) ∝ P(2)(2ω) = χ(2)E(ω)E(ω) (1.14)

Now having colinear 800nm and 400nm beams, we retard the 400nm pulses via a calcite

plate s. t. the pulses of both colours arrive at the same time at a second BBO (polarized

orthogonally with respect to the other), to instantiate Type II sum frequency generation

of the two pulses, producing 256nm UV-C light. This UV light is well above the work

function of the copper photocathode (ΦCu ≃4.16 eV), and is thus suitable to photoemit

electrons for the probe beam at an energy h̄ω266nm −ΦCu [19]. Ideally, the bandwidth

of the ultrafast pulse will be the only factor that can modulate the energy spread of the

resulting electrons, but, as surfaces are never atomically level, there will be competing

affects such as step defects, multi-faceting, and impurities that will impact the chromatic-

ity of the beam [20]. Yet, once the beam is generated, it is accelerated in a constant 90 kV

DC field to impart a de Broglie wavelength shorter than atomic distances.

The optical path lengths of the beams must be carefully chosen s. t. the incident

800nmoptical pulse arrives to the sample at the same instance (in lab time) as the electron

probe pulse, remembering to take into account the difference in propagation time of the

electrons in the beam at the given acceleration voltage. This allows for the identification

of “time-zero” in pump-probe experiments. Knowing where this crossing is allows for

the fine-tune delay of the pump signal to perform time-resolved experiments. The pump

line is delayed with respect to the probe by a delay stage (0.01mm spatial resolution) s. t.
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the pump arrives earlier than the probe by a given amount, making the electron bunches

probe the material at that particular delay time following photoexcitation.

◮ GENERATION OF RF SIGNALS + SYNCHRONIZATION TO THE LASER PULSE TRAIN

In order to derive an electrical signal that is inherently synchronized to the optical

pulse train, we can take a sampled portion of the beam from the modelocked oscillator

(∼5% in power) and shine it onto a photodiode, thus converting the optical signal

to an electrical one. Unfortunately, this generates a signal with a fundamental tone

of the repetition rate of the oscilallator (around 75MHz). Since an RF compression

field requires each electron bunch to sample the linear regime of a single cycle of the

RF field, the resonant frequency of the cavity ω010 = x01c/R must at least be greater

than this fundamental tone, and the synchronization requirement further means that

whatever electric signal we generate must be a harmonic of this fundamental tone. If

the cavity was driven using the fundamental tone, the cavity must then have a radius

R = x01 · 3× 108/(2π × 75× 106) ≈1.52m! Such a cavity is entirely impossible to realize,

especially for electron beams 100× smaller than the cavity. For this fundamental tone,

we finally approach reasonable cavity dimensions at the 40th harmonic ≈ 2.998GHz,

resulting in a cavity radius of a much more realistic 3mm. Such a small cavity is also

much easier to drive at the target powers needed for RF compression (around 100Wof

CW driving).

While the illumination of the photodiode with the oscillator light does produce a

frequency comb (a clock signal at every harmonic of the fundamental tone), the spectral

content of the electric signal at such high harmonics will be low, providing issues in

amplification to the necessary driving strengths. After bandpass filtering the frequency

comb to isolate the 40th harmonic (illustrated in Figure 1.5), it is amplified to high power

to be able to drive the RF compression field strongly enough. It is first, however, passed

through a synchronization system that uses active PID control to phase lock the driving

signal to a reference value determined by the initial phase difference of drive and pickup
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FIGURE 1.5: The measured frequency comb from the modelocked oscillator in the UEDS lab at McGill
University, reprinted with permission from [21]. The experimental setup used to generate the pulses
(a) shines the oscillator output onto a high-bandwidth Si photodetector. This generates an electrical
frequency comb (b) of the harmonics of the fundamental tone (∼ 75MHz). Magnifying into the S-band
illustrates the harmonics around the 3GHz tone (c), which is rendered in high resolution with 500 kHz
bandwidth in panel (d).

signals at the beginning of an experiment. The diagram of the cavity used in this thesis

is given in Figure 1.6.
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FIGURE 1.6: Schematic of the compression cavity used in the UEDS work of this thesis. The amplified,
phase-jitter corrected, driving signal is deposited into the input port on the top of the device. The energy
is deposited into the EM field from the RF signal by means of a drive loop, received by a pickup loop at
a relative angle so as to maximize the coupling. At the powers used to drive this cavity (∼ 100WCW),
the copper bulk will heat and expand. Cooling lines are machined into the block to control the device
temperature and minimize thermal expansion, thus retaining the target resonant frequency for the TM010

mode.

1.4 OVERVIEW

This thesis aims to further develop the capabilities of UED and ultrafast electron diffuse

spectroscopy (UEDS), specifically regarding the utility of these experiments in probing

materials down to the 2D limit, and open a new window on previously unseen phonon-

related phenomena using these techniques. In Chapter 2, we develop the theory of

(in)elastic scattering from a quantum mechanical view, and discuss its shortcomings.

We then describe the tools from DFT needed to progress towards a more rigorous

description of such scattering in Chapter 3. To begin making the connection between ab-

initio approaches and experimental time-resolved studies, we advance to a first-principles

description of phonon dynamics in Chapter 4, and finally make the connection to the

experimental observables of UED and UEDS in Chapter 5.
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Having the needed background, we begin discussing the primary results of this thesis.

In Part III, we start by experimentally validating the theory in the material 1L-MoS2
in Chapters 6 and 7, showing accurate and precise UEDS experiments are physically

realizable at the 2D limit. We continue in Chapter 8 by showing that such experiments

are able to sensitively detect spin- and valley-tronic effects, such as chiral phonons,

in systems where they exist. The final part of this thesis, Part IV, studies polaronic

materials, and discovers their diffuse scattering signatures. We first discuss conflicting

interpretations of existing UEDS data on the thermoelectric material SnSe in its room

temperature phase in Chapter 9, and proceed to validate our theoretical results on the

the benchmark wide-gap ionic insulator LiF, and apply our new-found knowledge to the

alleged polaronic material SnSe in Chapter 10.





2
Electron Scattering Theory

“Gentlemen, we have run out of money. It’s time to start thinking.”
—Ernest Rutherford

Before diving head first into the (admittedly detailed) theory of ab-initio treatments

of ultrafast scattering, we start from a quantummechanical picture to see how far we can

get from what one might expect out of Schrödinger’s equation for billiard ball scattering

of an electron off a potential. Miraculously, we can get very far with the tools provided

to us by Sakurai and others.

2.1 LIPPMANN-SCHWINGER FORMALISM

The relativistic nature of electrons in the limit of scattering necessitates the Schrödinger

wavefunction picture, where the key properties of the electron, namely its momentum

k and energy ε, are written in terms of the wavefunction Ψ. Assignment of the momen-

tum operator of the electron as p̂ = −i h̄∂x and tentative prescription of the particle’s

kinetic energy as T̂ = (p̂)2 = −h̄2∇2
x/2me allows us to write the time dependence of the

wavefunction via the energy operator i h̄∂t as:

i h̄∂tΨ(x, t) =

[
−h̄2

2me
∇2

x + V(x, t)

]
Ψ(x, t) (2.1)

27
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where we include an arbitrary potential energy landscape seen by the electron as V(x, t).

The solution of Eq. (2.1) is crucial in determining predictive behaviour for the electron in

a given environment.

2.1.1 Electrons in free space

Electrons propogating in real space see no external potential energy, i. e. V(x, t) ≡ 0,

leading to a separable equation of the form:

i h̄∂tΨ(x, t) = − h̄2

2me
∇2

xΨ(x, t) . (2.2)

As such, the energyof the systemwill remain constant,meaning that the eigenproblemwill

be characterized by eigenstates {Ψn} and eigenenergies h̄ωn , En, where En is the total

energy of the given eigenfunction. In this way, we separate the wavefunction into spatio-

temporal components un(x) and e−iωnt, where un(x) satisfies the Helmholtz equation
[
∇2

x + k2
n

]
un(x) = 0, and kn ≡ 2meEnh̄2 is the wavevector associated with the electron

momentum p2
n/h̄2. Separation of variables a second time allows for the decomposition

of the spatial wavefunction into each physical dimension as un(x) = ux
n(x · x̂)u

y
n(x ·

ŷ)uz
n(x · ẑ), allowing us to realise wavfunctions of the following form:

Ψn(x, t) = e−iωntun(x) =
3

∏
i=1

Aje
i(kn·êj)(x·êj) = Aei(kn·x−ωnt) (2.3)

2.1.2 Electrons in potential

Lemma 2.1. The expectation of an electron in an initial state |Ψ〉 scattering from a poten-

tial V̂ and being detected in a final state 〈k f | in the first Born-Oppenheimer approximation

can be written [22] as:

〈k f |V̂|Ψ〉 = 〈k f |
[

∑
n≥1

V̂

(
V̂

Ei − Ĥ0 + iǫ

)n−1]
|ki〉 = 〈k f |V̂|ki〉+O(V̂2)

The plane-wave solutions, in the absence of an external potential, break down in

solid state systems. The electrons in condensed matter are exposed to not only other



LIPPMANN-SCHWINGER FORMALISM 29

electrons, but the nuclei as well, moving quickly owing to finite temperature thermal

motion. This entangled state of affairs requires a more involved look into the behaviour

of the Schrödinger equation. For the sake of electron scattering, we consider only the

projection of the complete wavefunction onto the detection plane, given by the state

〈x|, as this is what will be detected in the real experiment. To this aim, we adopt the

Lipmann-Schwinger formalism, which allows for decomposition of the projection 〈x|Ψ〉 into

physically intuitive terms. To start, we assume a local potential 〈x′|V̂|x′′〉 = V(x′)δ(x′ −

x′′) and, using1 〈x|k〉 = eik·x/L3/2, we arrive at the Lipmann-Schwinger Equation:

〈x|Ψ〉 = 〈x|ki〉 −
2me

h̄2

∫
d3x′V(x′)〈x|Ψ〉 ei|ki||x−x′|

4π|x− x′|

=
1

L3/2

[
eiki·x +

eik f r

r

(
− meL2

2πh̄2

)
〈k f |V̂|Ψ〉

︸ ︷︷ ︸
, f (k f ,ki)

]
(2.4)

where we make use of the fact that the scattering potential is far from the imaging plane

ei |k||x−x′| ≈ eikre−iki·x′ with r , |x− x′| and k , |k|.

Lemma 2.2. Small displacement of Fourier Transform is a phase shift.

Proof.

F [h(x + y)] =
1

2π

∫
dx′e−iq·(x′+y)h(x′) =

e−iq·y

2π

∫
dx′eiqx′h(x′) = e−iq·yF [h(x)]

�

So what is this f ? Ignoring the first term of Eq. (2.4), which describes the unscattered

electon beam, this f is a probability density of scattering from an initial momentum

state ki to a final state k f in terms of the arbitrary external scattering potential. This

scattering form factor is thus crucial to the interpretation of the Lippmann - Schwinger

equation. To this end, we approximate the expectation of the wavefunction Ψ in the
1The derivation assumes a particle in an infinitesmial box, which will be taken to be infinitely large at the
final limit.
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scattering potential V̂ at a final momenta state k f using Lemma 2.1:

f (k f , ki) ∝ 〈k f |V̂|ki〉 =
∫

dx′〈k f |V̂|x′〉〈x′|ki〉

∝

∫
dx′

ei(ki−k f )·x′

L3
V(x′) ∝ Ṽ(Q = k f − ki) (2.5)

where we clearly see that the scattering form factor is related to the Fourier transform

of the scattering potential. The intensity of the scattered beam then can be written

(carrying the proper constants) as:

I(Q) = |〈x|Ψ〉|2 =

∣∣∣∣∣
eikr

r
f (k f , ki)

∣∣∣∣∣

2

=
1

r2

∣∣ f (k f , ki)
∣∣2 =

m2
e

4π2h̄4r2

∣∣Ṽ(Q)
∣∣2 (2.6)

where the onus now lies on applying the scattering potential resembling that seen by the

electrons in a solid state condensed matter system. For a single atom, in a semi-classical

picture, we assume its potential is only Coulomb like, namely:

Vκ(x) = −
Zκe2

|x| +
Z

∑
i=1

e2

|x− xi|
(2.7)

with Zκ the atomic weight, x a displacement from the ionic core, and xi the classical

position of the ith electron. Obviously this approximation is hardly valid formost systems,

but numerical implementations of computing the potential energy landscape associated

with energetic electrons have been well developed; chief among these is the Hatree-

Fock method [23, 24, 25] and the use of pseudopotentials [26, 27, 28, 29]. To determine

the atomic form factor, i. e. the Fourier transform of this potential, to high degree of

precision, we note that light atoms are spherically symmetric, and can be approximated

using the “sum of Gaussians” method, the parameters of which, for a 10-parameter (5

Gaussian) fit, are tabulated in Ref [30].

fe(Q) =
n

∑
i=1

ai exp(−biQ
2) (2.8)
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Note 2.1!
It is worth emphasizing here that we can readily tabulate x-ray scattering form

factors fx from the electron form factors fe via the Mott-Bethe formula [31, 32],

namely:

fe(Q) =
2mee

2

h̄2Q2
[Z− mec

2

e2
fx(Q)] ≈ 3.779

Q2
(Z− 3.54× 104 fx(Q))

showing a ∼ 105 enhancement in scattering of electrons.

Putting the pieces together viz a viz Lemma 2.2 and Note 2.1.2, we find the scattering

intensity resulting from the interatomic potential of a crystal:

Ṽc(Q) = F
[

∑
κ

Vaκ(x− rκ)

]
= ∑

κ

fe,κ(Q)e−iQ·ri (2.9a)

=⇒ I0(Q) = |〈x|Ψ〉|2 ∝

∣∣∣∣∑
κ

fe,κ(Q)e−iQ·rκ

∣∣∣∣
2

(2.9b)

2.2 THE RECIPROCAL LATTICE

At the heart of diffraction is the concept of a reciprocal lattice.

Definition 3 (Reciprocal lattice). The reciprocal lattice of the real-space “direct” lattice,

defined by lattice vectors {ai} in a real vector space V, is the dual space2 V∗ spanned by

the reciprocal lattice vectors {bj} for an inner product g : V ×V → R, g(ai, bi) = 2πδij.

Stated without proof [33, 34] is that the dual lattice in Rn has reciprocal lattice vectors

determined by:

bi = 2π
ǫσ1i...σni

ω(ai, . . . , an)
g−1(aσn−1iy . . . aσ1iyω) (2.10)

2The definition of dual lattice here that corresponds directly to the reciprocal lattice of solid state physics
is the Pontryagin duality (and the associated volumemeasure), not in its typical usage as duals of quadratic
forms on the vector space nor as the vector space of linear transformations with images in the ground
field.
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where ǫ is the Levi-Cevita tensor inRn, ω : Vn → R is the volume form, g−1 is the inverse

of the vector space isomorphism of the inner product ĝ : V → V∗ | ĝ(v)(w) = g(v, w),

and y denotes inner multiplication. Here, σ is a permutation matrix whose rows iterate

over cyclic permutations of indices 1 to n. In three dimensions, we find that the reciprocal

lattice vectors are given as:

b1 =
a2 × a3

a1 · (a2 × a3)
(2.11)

and analgously for cyclic permutations of the indices. An example of a 2D reciprocal

lattice is given in Figure 2.1. We can further construct the reciprocal points H, the

locations of the fundamental frequencies of the Fourier transformof the atomic potential,

as linear combinations of the reciprocal lattice vectors.

Definition 4 (Reciprocal points). Points in reciprocal space H are defined as H =

(h, k, l) · (b1, b2, b3), with h, k, l ∈ Z. The integer coefficients h, k, l are known as theMiller

indices, named after their inventor [35].

Definition 5 (Brillouin zone). The reciprocal space can be divided into regions that

compartmentalize the wavevectors q into physically distinct segments. The unit of

discretization of the reciprocal space is called the Brillouin zone (BZ), the primitive cell

of reciprocal space. It can be technically defined as theWigner-Seitz cell of the reciprocal

lattice, and can be practically determined by Voronoi decomposition of the reciprocal

points. The complete range of wavevectors q allowed s. t. q ∈ BZ is called the reducible

BZ, while the reduction of this space by all symmetries of the point group of the crystal

is called the irreducible BZ.

For large crystals, we make a transformation of the atomic positions ri → τpκ = Rp + xκ

s. t. Eq. (2.9a) becomes:

I0(Q) =
m2

e

4π2h̄4r2

∣∣∣∣∑
pκ

fe,κ(Q)e−iQ·(Rp+xκ)

∣∣∣∣
2

=
N2

pm2
e

4π2h̄4r2

∣∣∣∣∑
H

∑
κ

fe,κ(Q)e−iQ·xκ δ(q−H)

∣∣∣∣
2

(2.12)
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k0

(000)

(110)

FIGURE 2.1: The corresponding 2D reciprocal lattice of a hexagonal real lattice. Given in the solid lines are
the primitive rhomboidal reciprocal unit cell, and the dashed line gives the hexagon corresponding to the
Wigner-Seitz reciprocal unit cell. Reflections are labelled by the integer combinations of {bi} needed to
obtain the given reflection. Vectors correspond to the Bragg peaksHq, the momentum transfer k0, and
the scattering vector q.

where we used the large crystal limit provided by Lemma 2.3 [36].

Lemma 2.3. A sum of exponentials in the large crystal limit is a sum of delta functions

evaluated at the reciprocal points.

Proof. The Poisson summation formula says [37] that, for a well-behaved function
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FIGURE 2.2: A schematic illustration of reflections of incident light on a cubic lattice, showing how integer
divisions of the wavelength are reflected off the lattice for a given angle of incidence and interplanar
distance dhkl .

f : Rn → R and a full-rank lattice M ⊆ Rn:

∑
x∈M

f (x) =
1

covol(M) ∑
y∈M∗

F [ f (x)](y)

where M∗ is the dual lattice, and covol(M) = vol(Rn/M) is the volume of the

fundamental domain of M. Specializing to large crystals in R3 (covol(M) = Np)

for f (x) = δ(x), we can show:

Np

∑
m=1

e−iq·Rm
Np→∞−→ Np ∑

H

δ(q−H)

�
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2.2.1 Bragg’s law

We note that the primary information used in deriving Eq. (2.12) was the fact that the

frequencies of the Fourier-transformed atomic potentials is strongest at the Bragg peaks,

made manifest in the delta function constraint. To this end, we note that for an incident

electron of wavevector ki and final wavevector k f that the scattering form factor f (k f , ki)

is maximum when V̂(k f − ki) is maximum, namely that:

∆k , k f − ki = hb1 + kb2 + lb3 , H . (2.13)

This is known as the Laue condition, and describes that elastic scattering happens only

when the electron momentum transfer is equivalent to a reciprocal point H. This can

be related to the canonical form of Bragg’s Law by noting that, for elastic scattering,

|ki| = |k f | = 2π/λ, where λ is the de Broglie wavelength, and thus:

1

dhkl
= |H| = 2π

λ

∣∣k̂ f − k̂i

∣∣ = 2π sin ϑ

λ
(2.14)

where dhkl is the interplanar distance of the corresponding Miller plane. This yields the

original form of Bragg’s law:
2π sin ϑ

λ
=

1

dhkl
(2.15)

which removes the three dimensionality of the original constraint, but was historically

motivated by exploration of polycrystalline samples, where such information is less

critical for a heuristic analysis. A schematic illustration of this law is shown in Figure 2.2.

2.2.2 Ewald sphere

We can determine a geometric interpretation of Bragg’s law by recognising that elastic

scattering will only be possible for momentum transfersQ that fall on a sphere in recipro-

cal space of radius |Q| = 2π/λ, shown for 100 kev electrons and 13 keV x-rays in Figure 2.3.

The concept of the Ewald sphere allows us to re-package our understanding of peak

brightness in diffraction patterns. Bragg peaks can be thought of as “rods” in the normal
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FIGURE 2.3: The Geometric intepretation of Bragg’s Law, showing that the incident energy of the scatter
determines the 2D slice through reciprocal space of which diffraction will be representative. The image
shows the Fourier transform of the interatomic potential, with the Ewald sphere for electrons and soft
x-rays. The bottom panels show the apparent intensity on the imaging plane resulting from the increased
intersection of the Bragg peaks and the Ewald sphere for each probe as a function of scattering vector in
the b̂2 direction. The Bragg peaks intersect with the Ewald sphere of the electrons much more than the
Ewald sphere of the x-ray, resulting in more peaks being visible by the electron probe.

direction3, and finite momentum resolution effects will loosen the δ-fcn constraint of

Eq. (2.12). Together, these imply that the points that are bright in the image are those

rods that “cut” through the Ewald sphere; the less the sphere intersects the rods, the less

intense those peaks are in the diffraction.

3In low energy electrons, or thin samples, this results from the constructive intereference of the diffraction
of the crystal layers in the direction along the illumination axis.
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2.3 SCATTERING CROSS SECTION

Wehereunto relied on Lemma 2.1 to discuss only single scattering of the probing electron.

In principle, there aremultiple opportunities for the electron to scatter from the apparent

potential energy landscape. We codify our justification in Appendix A for using only the

Born-Oppenheimer approximation as such by examining the n = 2 term of the propagtor,

where we show:
dσ2

dΩ
<

1

a

(
dσ1

dΩ

)2

. (2.16)

For most materials, where [a] ∼ Å, the relative liklihood of multiple scattering is therefore

low.

2.4 OUTLOOK

Here we can proceed no further without making connections to first-principles ideas,

namely moving to the quasiparticle phonon picture. Yet, we can appreciate how far

quantum mechanics alone took us. Not only do we now know the behaviour of elastic

scattering, and under what conditions features in diffraction patterns appear, but also

the conditions required for single scattering. The elastic scattering information here

has been the focus of UED since its conception, and still contains rich information to

be discovered or understood. We make corrections to the present theory in Chapter 5,

where we include more atomistic descriptions of condensed matter systems to complete

the first-principles approach to inelastic diffuse scattering used in this thesis.





Part II

AN AB-INITIO VIEWOF ULTRAFAST SCATTERING AND

DYNAMICS





3
Density Functional Theory

“The first principle is that youmust not fool yourself,
and you are the easiest person to fool.”

—Richard Feynman

Owing to the in-depth ab-initio calcuations in this thesis, it is worth while to review

density functional theory (DFT) and how it can be used to calculate parameters of

interest such as electronic band structures and phonon dispersions. That being said,

the overview and complete description of computational quantum chemistry is very

much out of the pervue of this thesis, and does not serve the purposes herein. The

description here is limited to a minimal view to give the reader an elementary grasp on

the computational methods used in these works.

Historically, the first method through which we could compute electronic band struc-

ture was the Hartree-Fock method [23, 24], where wavefunctions can only be computed

for single electrons, removing all correlations between electrons from different atoms,

energies, orbitals with various degrees of hybridization, etc. Overcoming these limita-

tions was finally made possible in 1964 with the realization of the two Hohenberg-Kohn

theorems [38], stated below.

Theorem 3.1. The external potential is a unique functional of the electron density n(r). Mainly,

if two systems of electrons, each trapped in a potential v1(r) and the other in v2(r), have the same

41
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ground-state density n(r), then v2(r)− v1(r) is necessarily constant.

Theorem 3.2. The functional that derives the ground-state energy gives the lowest energy if and

only if the input density is truly the ground-state density. Namely, for anyN electrons in a potential

v(r), there is a functional F[n] of the electron density for which, Ev,N [n] = F[n] +
∫

v(r)n(r)d3r

is minimal at the ground-state, with E the system energy, As such,min Ev,N [n] = Egs.

Immediately following these theorems is the fact that the ground-state density uniquely

determines the potential, and thus all (potentially many-body) properties of the system.

To begin computing such a ground-state density, we start by determining the dominant

interaction mechanisms between the electrons and the rest of the system. Obviously,

there will be the Coulomb interaction for the density interacting with the nuclei Ven,

as well as the Coulombic self-interactions called the Hartree energy VH. We further

need, however, terms to take into account electron antisymmetry (exchange effects)

and electron correlation effects Vxc. We finally will need to include a kinetic energy

term where the density corresponds to a wavefunction consisting of a single Slater

determinant1. In such a picture, we arrive at Kohn-Sham DFT [39], where we can define

the total Hamiltonian as a function of the atomic coordinates τpκ of the form:
[
− h̄2

2me
∇2 + VKS

(
r;
{

τpκ

})
]

︸ ︷︷ ︸
HKS

ψn(r) = εnψn(r) . (3.1)

Here, VKS is the sum of nuclear, Hartree, and exchange-correlation energies:

VKS = Ven + VH + Vxc (3.2a)

Ven
(
r;
{

τpκ

})
= ∑

pκR

Vκ(r− rpκ − R) (3.2b)

VH
(
r;
{

τpκ

})
=

e2

4πǫ0
∑
R

∫

sc

n
(
r′;
{

τpκ

})

|r− r′ − R| dr′ (3.2c)

1Such terminology refers only to the fact that one electron corresponds to one molecular orbital in the
non-interacting ”single-particle electron” limit. This step is very similar to standard Hartree-Fock theory.
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Vxc
(
r;
{

τpκ

})
=

δExc[n]

δn

∣∣∣∣
n
(
r;
{

τpκ
}) (3.2d)

where R is a direct lattice vector of the supercell. We have now a single-particle descrip-

tion of the wavefunctions, their energies, and the total system energy based on densities,

expressed as:

n(r) = 2 ∑
i

ψ∗i (r)ψi(r) . (3.3)

The first of the potentials here is the electron-lattice potential. It is the sum of the

individual atomic potentials Vκ with respect to the nuclei. In a classical picture, Vκ is a

Coulomb interaction of the form:

Vκ(r) = −
e2

4πǫ0

Zκ

|r| (3.4)

where Zκ is the atomic number of the atom. Owing to the divergence of the Coulomb

potential at |r| = 0, such a potential clearly cannot be physical for small distances as

matter does not spontaneously implode. To correct for this, we implore the pseudopoten-

tial method. Pseudopotentials are nonlocal due to explicit individual characterization of

angular momentum channels (spherical harmonics) [40], but such considerations are

left to the reader.

Definition 6 (Pseudopotential). By replacing the nuclear charge with the ionic charge

(the difference between the nuclear charge and some number of core electrons described

by the pseudopotential), we create a function that resembles Eq. (3.4) at large |r| but

remaining finite at |r| ∼ 0 that can take into account the effective potential of core

electrons, while still retaining the key features and behaviour of covalent electrons.

Next is the Hartree potential VH, describing the Coulomb repulsion between the

electron being considered in one of the Kohn-Sham equations and the total electron

density defined by all the electrons. This includes a self-interaction owing to the fact

that the electron under consideration is also a part of the total electron density. This self

interaction is unphysical, and hence, a correction is applied in the final potential Vxc, the
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exchange-correlation potential. This is an in-depth topic in its own right, and interested

readers are encouraged to read Ref [41]. It is, simply put, the functional derivative of the

exchange-correlation energy functional as in Eq. (3.2d), itself a phenomenological choice

based on the particular system of interest. There are various levels of approximations

taking into account local and non-local effects. Some of these are listed in Note 3.

Note 3.1!
Given below are XC functionals at different orders of approximation. Here, n

is the electron density, τ the kinetic energy density, and Exc
HF is the Hatree-Fock

exchange energy.

XC func. Inclusions

LDA n local electron density

GGA ∇n electron density + slope

metaGGA τ +∇2n kinetic energy + curvature

hybridGGA Exc
HF KS orbitals

3.1 ELECTRONIC BAND STRUCTURE

To determine the ground state electron density, we can iterate over the Kohn-Sham equa-

tions by Algorithm 1. There are many details that have been skipped in this description,

such as the ideal choice of initial trial guess for the density, how to update the wavefunc-

tions should the density after the next iteration not be the ground state, etc. In practice,

the convergence criterion is expressed as a difference in energy between successive

iterations of the algorithm instead of exact identity between two densities. Furthermore,

many of these calculations, such as the solving of the eigenproblem in Eq. (3.1) and the

evaluation of the energy functional in Eq. (3.1), happen in momentum space (the Fourier

transform of these equations). The conversion introduces many advantages, such as an
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Algorithm 1 Ground-state electron density optimization
Precondition:

initial guess for the density n0(r) OR initial guess for wavefunctions {ψi0(r)},
a differential energy tolerance ∆EDFT

tol ,
Postcondition: Single-particle ground-state electron wavefunctions {ψi(r)}

1 functionGROUND-STATE DETERMINATION({ψi0(r)}, ∆EDFT
tol )

2 for all i ∈ [1, N] do
3 Update ψi+1(r)← solution of Kohn-Sham equation Eq. (3.1)
4 Compute ni+1(r)← determine equivalent density from Eq. (3.3)
5 if ni(r) ≡ ni+1(r) then
6 nKS(r) = ni+1(r)← Ground-state density reached
7 return nKS(r)
8 else
9 Update {ψi(r)} ← Use of optimization method (Newton, Secant, etc)

increase in computational efficiency and data management, at the cost of increasing

the complexity of a complete description of the theory. As such, we do not discuss it

further in this thesis. Suffice it to say, Kohn-Sham DFT allows for the computatation of

reciprocal space electron wavefunctions {ψnk} and their eigenvalue energies εnk.

3.1.1 Maximally LocalizedWannier Functions

Owing to their relevancy and usage in the practical implementations to solutions of these

equations, we take the time to briefly mention maximally-localizedWannier functions

(MLWF) [42, 43]. In these simulations, the periodicity of the system necessitates the

usage of Bloch states that are also periodic with the lattice, for example explicitly writing

the eigenfunctions of the DFT Hamiltonian:

ψnk(r) = N
1/2
p unk(r)e

ik·r (3.5)

where unk is a lattice-periodic function, normalized to one in the crystal unit cell while

the wavefunction is normalized to one in the supercell of the calculation. The Wannier

functions are then defined by:

φnR(r) =
N

1/2
p

ΩBZ

∫

BZ
d3ke−ik·Rψnk(r) (3.6)
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for BZ volume ΩBZ and number of k-grid points Np. Since Bloch states are only defined

up to a variance in the phase, the identification of “ideal”Wannier functions corresponds

to finding the phases of the Bloch states that give the most convenient basis set of

real-space functions in which to work. This usually equates to the MLWFs, where φnR is

highly localized around R. The minimization of spread of these MLWF is according to

some procedure outside the scope of this work. Nonetheless, what results are a set of

molecular orbital-like functions {φnR} localized in real space that allow us to directly

visualize the electronic wavefunctions computed in Algorithm 1, as well as offering a

more convenient basis set to interpolate electronic bandstructure, for example. Such

functions are implemented in many software suites.

Note 3.2!
The following sections discuss the concepts of a phonon, as well as electron-phonon

coupling, which have been hereunto undefined. We provide a more rigorous de-

scription of these concepts as they become relevant in Sections 4.3.1, 5.1.1, 7.1.2, 8.1

and 10.2.

3.2 VIBRATIONAL DISPERSION

To determine the allowed ways of movement of the crystal, we need to, in some sense,

determine the force that will drive such motion. Writing the energy of the system EDFT =
〈
ψnk

∣∣HKS
∣∣ψnk

〉
as in Eq. (3.1), we can find the equivalent force via the Hellman-Feynman

Theorem by considering variations with respect to some atomic displacements ∆τpκ:

F = − ∂EDFT

∂∆τpκ
= −

〈
∂ψnk

∂∆τpκ

∣∣∣HHS
∣∣∣ψnk

〉
−
〈

ψnk

∣∣∣HHS
∣∣∣ ∂ψnk

∂∆τpκ

〉
−
〈

ψnk

∣∣∣∣
∂VKS

∂∆τpκ

∣∣∣∣ψnk

〉
.

(3.7)
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With 〈ψnk| as the ground state, the first two terms of Eq. (3.7) will vanish2, leaving us with

the following harmonic expansion of the energy of the system:

EDFT[{ψnk}, {∆τpκ}] = EDFT
0

[{
ψ0

nk

}]
+

1

2 ∑
καp

κ′α′ p

Cκαp,κ′α′p′︸ ︷︷ ︸
force constants

(
∆τpκ

)α
(

∆τp′κ′
)α′

+O(∆τ
3) .

(3.8)

Here, the second order force constants and corresponding forces can be expressed [44]

as:

Cκαp,κ′α′p′ =
∂2EDFT

∂∆τ
α
pκ∂∆τ

α′
p′κ′

=

〈
∂ψnk

∂∆τpκ

∣∣∣∣
∂VKS

∂∆τpκ

∣∣∣∣ψnk

〉
+

〈
ψnk

∣∣∣∣∣
∂VKS

∂∆τp′κ′

∣∣∣∣∣
∂ψnk

∂∆τp′κ′

〉
−
〈

ψnk

∣∣∣∣∣
∂2VKS

∂∆τpκ∂∆τp′κ′

∣∣∣∣∣ψnk

〉

(3.9a)
(

F
pp′
κ

)α
= − ∑

κ′,α′
Cκαp,κ′α′p′

(
∆τp′κ′

)α′
. (3.9b)

We note finally that the Fourier transform of these constants is what is known as the

dynamical matrix [45], whose components are given by:
(
Dκκ′

q

)
αα′

, C̃κα,κ′α′(q)/
√

µκµκ′ =
1

Np
√

µκµκ′
∑
p

Cκα0,κ′α′peiq·Rp . (3.10)

This elucidates the pathway throughwhichwe are able to compute vibrational dispersion.

By displacing the lattice by a small amount3, performing a self-consistent calculation

to determine the new electronic density and take the numerical derivative, therefore

computing the interatomic force constants, we can generate the dynamical matrix at a

particular momentum q. From here, we perform standard eigenproblem solving tech-

niques to solve Eq. (5.2) for the atomic displacements and their associated energies.

The scheme to generate such dynamical matrices and related quantities is illustrated in

Algorithm 2.

2This is because
〈

ψnk

∣∣HKS
∣∣ ∂ψnk

∂∆τpκ

〉
= εnk〈ψnk| ∂ψnk

∂∆τpκ
〉 = 0.

3Each atom can be moved in any of the Cartesian directions, meaning there will be a total of 3Nat modes
of movement of the lattice.
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Algorithm 2 Density functional perturbation calculations
Precondition:

equilibrium electronic wavefunctions
{

ψ0
nk

}
,

Postcondition: Vibrational dispersion with frequencies ωqν and displacements εqνκ

1 function DFPT(
{

ψ0
nk

}
)

2 for all i ∈ [1, 2, 3] do ⊲ Cartesian indices
3 for all κ ∈ [1, Natoms] do ⊲ Iterate over each atom
4 Displace atom κ in direction i by small amount hiκ
5 Solve for new electronic wavefunctions by Algorithm 1
6 Determine interatomic force constants for hiκ

7 Fourier interpolate to determine q-space force constants
8 Generate Eq. (5.2) for arbitrary momentum
9 Diagonalize Eq. (5.2) to determine frequencies and eigendisplacements
return ωqν, εqνκ

Note 3.3!
These calculations are extremely expensive owing to the many self-consistent

calculations necessary at each atomic perturbation, in addition to the expensive

solutions of the dynamical matrix calculations. As such, the dominant technique is

to take advantage of the benefits of the Fourier transform. Since the momentum-

space interatomic force constants uniquely define the dynamical matrix, by com-

puting the momentum space force constants on a coarse grid in q-space and

transforming them to r-space, we can Fourier interpolate back to q-space with

arbitrary density in momentum space, allowing for easy determination of energies

and displacements at arbitrary momenta.

There are two assumptions in these derivations: (i) the harmonic approximation,

allowing for the truncation of Eq. (3.8) to second order in the atomic displacements,

and (ii) the Born-Oppenheimer adiabatic approximation, made when calculating the

interatomic force constants with the electrons in the ground state. Moving beyond the

harmonic approximation is treated more in Chapter 6 of this thesis.
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3.3 ELECTRON-PHONON COUPLING

In order to determine the strength of EPC in materials, we will need to first determine

explicitly the electron-phononHamiltonian in the framework ofDFT. In such calculations,

explicit supercells are often needed to obtain accurate results. To this aim, we must

reformulate the KS Hamiltonian now including the electron-phonon interaction. Starting

with Eq. (3.5), we expand the Kohn-Sham potential of Eq. (3.2a) to first order in the

atomic displacements:

VKS
({

τpκ

})
= VKS

({
τ

0
pκ

})
+ ∑

pκα

∂VKS

∂∆τ
α
pκ

∆τ
α
pκ

= VKS
({

τ
0
pκ

})
+ N−1/2

P ∑
qν

∆qνVKS
(

âqν + â†
−qν

)
(3.11)

where we have defined the following as in [46]:

∆qνVKS = eiq·r∆qνvKS (3.12a)

∆qνvKS = lqν ∑
κα

(µ0/µκ)
1/2
(

ε
κ
qν

)α
∂καqvKS (3.12b)

∂καqvKS = ∑
p

e−iq·(r−Rp) ∂VKS

∂∆τ
α
pκ

∣∣∣∣
r−Rp

(3.12c)

where lqν = [h̄/(2µ0ωqν)]
1/2 is the zero-point displacement amplitude of the mode ν

at wavevector q, with µ0 being a simple reference mass to ensure consistent dimen-

sions4. Combining Lemma 2.2, Eq. (3.5), and Eq. (3.12), we arrive at the electron-phonon

Hamiltonian.

Ĥep = N−1/2
p ∑

k,q
∑
mnν

gν
mn(k, q)ĉ†

mk+q ĉnk

(
âqν + â†

−qν

)
(3.13)

where ĉ and ĉ† are the Fermionic annihilation and creation operators. We define the

EPC matrix elements in terms of the periodic components of the Bloch wavefunction

(c.f. Eq. (3.5)) as:
4It is usually taken to be the proton mass.
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gν
mn(k, q) =

〈
umk+q

∣∣∣∆qνvKS
∣∣∣ unk

〉
(3.14)

The techniques implemented to compute such matrix elements, as well as couplings

second-order in the atomic displacements are detailed and cumbersome. Interested

readers are encouraged to peruse Ref [46].



4
Ab-initio dynamic theory

“Elegance should be left to shoemakers and tailors.”
—Ludwig Boltzmann

In order to start examining the microscopic states of the lattice following photoex-

citation, we first must consider the behaviour of the electronic system and the lattice.

A common way is by ascribing them as heat baths resting at temperatures Tel and Tph

respectively [47]. Before, we treated phonons in a single “particle” picture, but as real

systems populate each of these quasiparticles en masse, we pivot to a statistical view of

their resulting dynamics.

Assuming an isotropic static coupling between these two heat sinks, gel and gph, we

can show that the energy transfer between them for a sufficiently small temperature

difference will be linear during the time interval ∆t. Writing the energy of each bath as

E = CT, where C is the specific heat of the bath, and imposing energy conservation

(∆Eel = −∆Eph and thus gel = gph , g1), we find the coupled first order differential

equations, as a function of pump-probe delay time τ, to describe the combined system

in the two temperature model (TTM):

∂Tel

∂τ
=

g

Cel

(
Tph − Tel

)
(4.1a)

1This coupling will have units of
[
energy× (temperature× time)−1

]
.
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∂Tph

∂τ
=

g

Cph

(
Tel − Tph

)
. (4.1b)

In this regime, the coupling g aims to restore thermal equilibrium (Tel = Tph), and in the

static coupling limit, Eq. (4.1) admits exponential solutions (rise for the heat sink, decay

for the heat source). Indeed, to successfully model the ultrafast photoexcitation of the

sample, we can include source terms into Eq. (4.1b) of the form Ae−|τ|∆νθH(τ), where τ

is reminiscent of the pump-probe delay time and ∆ν is the bandwidth of the ultrafast

pulse (implying a pulse duration of 1/∆ν). In such a scheme, we can determine analytical

expressions of the temperatures of each bath in the form:

Tel(τ) = −
b1

∆ν
e−τ∆ν − b2γ−1e−γτ + b3 (4.2a)

Tph(τ) = Tel(τ) +
Cel

g

[
(b1 − A)e−τ∆ν + b2e−γτ

]
. (4.2b)

4.1 TWO-TEMPERATURE MODEL

Now having explicit expressions for the temperatures of each system in the TTM, we

begin to slowly remove approximations and make Eq. (4.2) as technically accurate as

possible. In a thermalized regime, the occupation of a given electronic or vibrational

eigenstate will be given by the Fermi-Dirac (FD) or Bose-Einstein (BE) distributions

respectively.

fnk(µ, Tel) = [e(εnk−µ)/kBTel + 1]−1 (4.3a)

nqν(Tph) = [eh̄ωqν/kBTph − 1]−1 (4.3b)

with µ the chemical potential. We have now made the connection to first-principles cal-

culations. Following the computational procedures outlined in Chapter 3, we determine

electronic band structures εnk and phonon frequencies ωqν that allows for immediate

calculation of these occupation distribution functions2. By integration over electronic
2The determination of the chemical potential µ is discussed in Section 4.3.



TWO-TEMPERATURE MODEL 53

(vibrational) momenta k (q), we determine the appropriate density of states (DOS) Del(ε)

(Dph(ω)). We then write expressions for the electron and phonon heat capacities as:

Cel(T) =
∫ ∞

∞
dεDel(ε)ε

∂ f (µ, ε, Tel)

∂Tel
(4.4a)

Cph(T) =
∫ ∞

0
d(h̄ω)Dph(ω)h̄ω

∂n(ω, Tph)

∂Tph
. (4.4b)

Owing to the nontrivial temperature dependence of these capacities, the coupled system

Eq. (4.2) requires careful numerical integration techniques, such as Runge-Kutta time

stepping. While the strength of the EPC is technically given with full electronmomentum,

phonon momentum, electron band, and phonon branch resolution via Section 3.3 and

Eq. (3.14), owing to the expensive computation of retaining such momentum resolution

throughout the time propagation, we can approximate this coupling constant through

the second moment of the phonon spectrum 〈ω2〉 and the isotropically averaged cou-

pling strength to the electronic system λ. These are determined entirely by the Eliashberg

function α2F(Ω):

λ〈ω2〉 = 2
∫

Ωα2F(Ω)dΩ (4.5)

Definition 7 (Eliashberg function). This is the probability of an electronic state transiting

to and from the state nk by interaction with a phonon mode at frequency ω. We define

the momentum resolved coupling strength:

λqν ∝
1

π

Π′′qν

ω2
qν

(4.6)

where Π′′ is the imaginary component of the phonon self-energy determined by the

interaction vertex of the coupled Hamiltonian in Eq. (3.13). From here, we can then write

the Elaishberg function in terms of these coupling strengths as [48]:

α2F(ω) =
1

2 ∑
ν

∫
dq

ΩBZ
ωqνλqνδ

(
ω−ωqν

)
(4.7)
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We then write the isotropically averaged coupling strength g (in metals) as [49]:

g =
πkB

h̄Del(εF)
λ〈ω2〉

∞∫

−∞

D2
el(ε)

(
−∂ f (µ, ε, Tel)

∂ε

)
dε (4.8)

where εF is the Fermi level. This now completely describes the TTM, but these results do

present their own drawbacks and approximations.

Most immediately seen is the fact that we have imposed that the electronic and

vibrational distribution functions at all time steps can be described by FD or BE statistics

at elevated electronic temperature Tel and effective lattice temperature Tph (therefore

assumed tobe thermalized). This implies that theTTM is not suited at all to describe non-

equilibrium lattice dynamics, nor early stage electron dynamics (. 100 fs), hot carrier

generation ansiotropic throughout the BZ, or electron-electron / electron-plasmon

scattering. This makes the application of the TTM limited to (semi-)metals or materials

with short electron thermalization times, completely excluding semiconductors or other

gapped systems.

4.2 NONTHERMAL LATTICE MODEL

We can extend the number of heat sinks that are included in such a framework to produce

the nonthermal lattice model (NLM). By now ascribing an effective temperature to a

certain partition of the phonon modes, we can rewrite the coupled set of Ng differential

equations as:
∂Tν

ph

∂τ
=

gν

Cν
ph

(Tel − Tν
el) + ∑

ν′

Tν′
ph − Tν

ph

τνν′
(4.9a)

∂Tel

∂τ
=

Ng

∑
ν

gν

Cel
(Tν

ph − Tel) + S(τ) (4.9b)

where S(τ) is the “heat” source, Cν
ph the phonon heat capacity obtained by limiting the

DOS to only include phonon mode ν, and gν likewise the coupling strength limiting

the phonon spectrum to include only mode ν. In this way, we can describe anisotropic
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coupling to Ng heat baths, where 1 ≤ Ng ≤ νmax. To roughly account for the phonon-self

interaction, we compute the decay time constant of the νth subgroup by its interaction

with the vibrations in the ν′th subgroup τνν′ [50]. This approach has been successfully

employed previously [51], but still presents drawbacks, namely in the arbitrariness of the

partitioning of the vibrational system. For materials with few atoms in its unit cell, these

coupled system of equations is relatively inexpensive, but for large systems, the NLM

becomes untractable. Furthermore, the NLM does not take into account momentum

anisotropy in either the coupling strengths g or the phonon lifetime τνν′ . In order to

overcome these limitations, we move to an exact scheme that allows for the retention

of arbitrary electron and phonon momentum resolution, time resolution, and phonon

mode resolution.

4.3 TIME-DEPENDENT BOLTZMANN EQUATION

The time dependence of the electronic and vibrational occupations can be modelled via

the time-dependentBoltzmannequation (TDBE) [52]. In this scheme, initial temperatures

of each degree of freedom, Tel0 and T
ph
0 respectively, are used to initialize the electron

and phonon occupancies, fnk and nqν, to the FD and BE distributions. Propagating the

system according to Eq. (4.10) allows direct determination of these occupations with

arbitrary time and momentum resolution.

∂ fnk

∂τ
= Γ

e−ph
nk ( fnk, nqν; τ) (4.10a)

∂nqν

∂τ
= Γ

ph−e
qν (nqν, fnk; τ) + Γ

ph−ph
qν (nqν; τ) (4.10b)

Here, Γx-y(τ) are the collision integrals used to describe the scattering rates of coa-

lescing and emissive processes in and between the electronic and vibrational systems3

3Electron-electron scattering is not expected to contribute in the physical or virtual system, as the
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for a propagation time τ. Including the phonon-phonon interactions explicitly takes

into account the available phase space for anharmonic phonon scattering processes,

while the phonon-electron term describes the transfer of energy to the lattice from the

excited carriers relaxing to equilibrium.

In order to solve the coupled Eq. (4.10), we start by specifying initial conditions for

the electron and phonon occupations, satisfying FD and BE statistics f 0
nk(µ, T0

el) and

n0
qν(T

0
ph). The chemical potential µ is solved self-consistently by the following relation

for a given carrier concentration:

n0 =
1

ΩBZ

cond
∑
m

∫
dk f 0

mk(µ, T0
el) (4.11)

where n0 is the concentrationof photo-excited carriers, and the sumextends over the con-

duction manifold4. The TDBE is then propagated by explicitly computing the electron-

phonon and phonon-electron collision integrals, whereas phonon-phonon scattering is

accounted for in the relaxation time approximation (RTA) [53].

4.3.1 Electron-phonon coupling revisited

In order to derive the scattering rates resulting from EPC, we start from the bosonic

annihilation and creation operators âqν and â†
qν discussed more in Section 5.1.1 and the

expression of the electron-phonon Hamiltonian from Eq. (3.13). To continue further,

we recall that the phonon occupancy operator is defined as N̂qν, with eigenvalues nqν,

related to the eigenstate |χ〉 of the phonon Hamiltonian:

Ĥph = ∑
qν

h̄ωqν

[
âqν â†

qν + 1/2

]
. (4.12)

Recalling that the Kohn-Sham wavefunctions |ψnk〉 are eigenstates of the electronic

Hamiltonian from Chapter 3, we express, in the Born-Oppenheimer approximation, the

initial state |i〉 as a Hartree-like product |i〉 = |ψi〉|χi〉, and likewise for the final state. In
electron occupation at each step can be reasonably described by a FD distribution [52].
4This formula is readily extended to hole concentrations, with the sum going over the valence manifold
instead.
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such a framework, we write the corresponding matrix elements of the electron-phonon

Hamiltonian in Eq. (3.13) as:

〈
f
∣∣∣He−ph

∣∣∣ i
〉
= N−1/2

p ∑
k,q

∑
mnν

gν
mn(k, q)

〈
ψ f

∣∣∣ĉ†
mk+q ĉnk

∣∣∣ψi

〉 〈
χ f

∣∣∣âqν + â†
−qν

∣∣∣ χi

〉
.

(4.13)

Fermionic matrix elements will be nonzero only if the initial and final states differ in

occupation from nk to mk + q, namely that 〈ψ f |ĉ†
mk+q ĉnk|ψi〉 =

[
fnk(1− fmk+q)

]1/2.

Likewise, boson statistics shows that 〈χ f |âqν|χi〉 =
√

nqν and 〈χ f |â†
−qν|χ f 〉 =

√
n−qν + 1

provided the initial and final states differ in occupation from ±qν so that n
f
qν = ni

qν ∓ 1.

Such considerations describe phonon absorption processes. By using Fermi’s golden

rule, we can now determine the transition rate of such systems.

Γi→ f = Γ
ph−e
abs =

2π

h̄

∣∣∣〈 f |Ĥe−ph|i〉
∣∣∣
2

δ
(

Etot
f − Etot

i

)

=
4π

h̄ ∑
mn

∫
dk

ΩBZ
|gν

mn(k, q)|2 fnk(1− fmk+q)nqνδ(εnk + h̄ωqν − εmk+q) .

(4.14)

We likewise create the scattering transition probability for emissive processes:

Γ
ph−e
em =

4π

h̄ ∑
mn

∫
dk

ΩBZ
|gν

mn(k, q)|2 fnk(1− fmk+q)(nqν + 1)δ(εnk − h̄ωqν − εmk+q) (4.15)

as well as likewise create an expression for the electron-phonon collision integral Γ
e−ph
nk

[52]. These collision integrals are given by Eq. (4.16) below:

Γ
e−ph
nk ( fnk, nqν; τ) =

2π

h̄ ∑
mν

∫
dq

ΩBZ
|gν

mn(k, q)|2

×
{
(1− fnk) fmk+qδ(εnk − εmk+q + h̄ωqν)(1 + nqν)

+ (1− fnk) fmk+qδ(εnk − εmk+q − h̄ωqν)nqν

− fnk(1− fmk+q)δ(εnk − εmk+q − h̄ωqν)(1 + nqν)

− fnk(1− fmk+q)δ(εnk − εmk+q + h̄ωqν)nqν

}
(4.16a)
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Γ
ph−e
qν (nqν, fnk; τ) =

4π

h̄ ∑
mn

∫
dk

ΩBZ
|gν

mn(k, q)|2 fnk(1− fmk+q)

×
[

δ(εnk − h̄ωqν − εmk+q)(nqν + 1)

− δ(εnk + h̄ωqν − εmk+q)nqν

]
. (4.16b)

It is important to note that Eq. (4.16) directly depend on the amplitude of the EPCmatrix

elements, namely |gν
mn(k, q)|2, where m, n index the Kohn-Sham electronic eigenstates.

Therefore, any renormalization of the EPC strength will directly affect the propagation

of the TDBE and the subsequent simulated diffraction intensity.

4.3.2 Phonon-phonon coupling

The phonon self-interacting Hamiltonian can be prescribed to the anharmonicities

arising from the lattice and is expressed, up to three-phonon processes, as [54]:

Ĥph−ph = ∑
n>2





1

n! ∑
{νi}

Ψ
ν1ν2···νn
q1q2···qn

n

∏
i

∫
dqi

ΩBZ

[
âqiνi

+ â†
−qiνi

]




n=3−→ 1

3! ∑
qq′q′′

∑
νν′ν′′

Ψνν′ν′′
qq′q′′

[
âqν + â†

−qν

] [
âq′ν′ + â†

−q′ν′

] [
âq′′ν′′ + â†

−q′′ν′′

]
(4.17)

where Ψνν′ν′′
qq′q′′ is the 3-phonon scattering matrix elements of coalescing (emission) pro-

cesses. The evaluation of the expectations of these bosonic operators is tedious but

analagous to the previous derivations. We can express the phonon-phonon scattering

probability as follows:

Γ
ph−ph
qν (nqν; τ) =

2π

h̄ ∑
νν′

∫
dq′

ΩBZ

∣∣∣Ψνν′ν′′
qq′q′′

∣∣∣
2

×
{
[(nqν + 1)(nq′ν′ + 1)nq′′ν′′ − nqνnq′ν′(nq′′ν′′ + 1)]

× δ(ωqν + ωq′ν′ −ωq′′ν′′)δ
H
qq′−q′′

+
1

2

[
(nqν + 1)nq′ν′nq′′ν′′ − nqν(nq′ν′ + 1)(nq′′ν′′ + 1)

]

× δ(ωqν −ωq′ν′ −ωq′′ν′′)δH
q−q′−q′′

}
(4.18)
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4.3.2.1 Relaxation time approximation

This collision integral, while technically accurate, is not open to interpretation in terms

of understanding the degree of anharmonicity in the lattice for a given material. To

extract a set of physically meaningful values, we compute the phonon-phonon collision

integral Γ
ph−ph
qν in the RTA. In this manner, we can express this collision integral as:

Γ
ph−ph
qν (nqν; τ) ≃ nqν(τ)− n

eq
qν(τ)

τ
ph−ph
qν

(4.19)

where neq is the equilibrium distribution that arises at the effective temperature of the

lattice at time τ. Its time dependence arises from the constant exchange of energy be-

tween the vibrational and electronic systems, leading to changes in average temperature

of the lattice. Furthermore, τph−ph
qν is the phonon-phonon relaxation time at equilibrium,

defined [55]:

1

τ
ph−ph
qν

=
h̄π

4 ∑
ν′ν′′

∫
dq′

ΩBZ

∣∣∣∣Ψ
νν′ν′′
qq′q′′

∣∣∣∣
2

+

(nq′ν′ − nq′′ν′′)δ(ωqν + ωq′ν′ −ωq′′ν′′)δ
G
q+q′−q′′+

∣∣∣∣Ψ
νν′ν′′
qq′q′′

∣∣∣∣
2

−
(nq′ν′ + nq′′ν′′ + 1)δ(ωqν −ωq′ν′ −ωq′′ν′′)δ

G
q−q′−q′′

(4.20a)

(
Ψνν′ν′′

qq′q′′

)
±
= ∑

i∈u.c.
∑
j,k

∑
αβγ

Φ
αβγ
ijk

(εqνi)
α (ε±q′ν′ j)

β (ε−q′′ν′′k)
γ

√
µiµjµk

e±iq′·Rj e−iq′′·Rk (4.20b)

Φ
αβγ
ijk =

∂3HKS

∂rα
i r

β
j r

γ
k

≃ 1

2h

[
∂2HKS

∂r
β
j ∂r

γ
k

(rα
i = h)− ∂2HKS

∂r
β
j ∂r

γ
k

(rα
i = −h)

]

≃ 1

4h2

[
− F

γ
k (r

α
i = h, r

β
j = h) + F

γ
k (r

α
i = h, r

β
j = −h)

+ F
γ
k (r

α
i = −h, r

β
j = h)− F

γ
k (r

α
i = −h, r

β
j = −h)

]
(4.20c)

where (εqνi)
α the αth component of the atomic eigendisplacement of the ith atom at

momentum q in mode ν, and Φ the third-order interatomic force constant. HKS is the

Kohn-Sham DFT Hamiltonian, as in Eq. (3.1), of the perturbed system (/ Eq. (3.8)), and rα
i
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the αth component of the displacement from equilibrium of the ith atom5, with F
γ
k the γ

component of the force felt on atom k under component-wise displacements of atoms i

and j by ±h, with h≪ 1.

Note 4.1!
Most phononcalculations use the adiabatic approximation, whichnecessitates that

the many-body force constants form a real and symmetric matrix, guaranteeing all

eigenvalues (and those phonon frequencies) are real. This directly corresponds

to sharp resonances in the dynamical matrix, and phonons are meaningful long-

lived excitations of the system. Going beyond the adiabatic approximation is

essential for metals owing to the divergences of the dielectric function at q ∼ Γ,

and introduces frequency renormalization and linewidth broadening [46].

The third-order force constants are indicative of the lowest order term in the imaginary

term of the phonon self-energy ℑΣ
ph−ph
qν , and are thus the first higher-order term than

the harmonic approximation.

4.4 SUMMARY

To briefly recapitulate the various methods of simulating phonon dynamics, we visualize

the coupling paradigms of each method in Figure 4.1. The TTM will provide insight

for systems where a scalar coupling between the electronic and vibrational system is

sufficient, where the extension of this scalar coupling to multiple phonons via the NLM

provides finer-grained information on the internal channels of equilibration. Should a

scalar coupling be insufficient, a momentum-resolved coupling must be established, and

can then be used to provide a precise view into the available energy transfer mechanisms

across phonon modes, and across the BZ.
5These force constants are determined by resolving an irreducible set of atomic displacements from
which to compute the full anharmonic matrix.



SUM
M
ARY

61

Ng = 1 Ng > 1

Ng = 3Na

e ph
nk,q

ph ph
q ,q

e ph
nk,q

ph ph
q ,q

ph ph
q ,q

ph ph
q ,q

ph ph
q ,q

e ph
nk,q

g

gb1

b2

{k :k BZirr}
{q :q BZirr}
TTM
NLM
TDBE

FIGURE 4.1: Comparison of different lattice models for electron-phonon coupled dynamics shown for a hexagonal reciprocal lattice (illustrated in
its primitive rhomboidal reciprocal space unit cell, with 2D reciprocal lattice vectors b1 and b2). Black arrows indicate couplings between different
electronic or phononic systems, and couplings for a given model are only those entirely contained in a given bounding box.





5
First-principles approach to UED

“But science and everyday life cannot and should not be separated.”
—Rosalind Franklin

Nowhaving away to track the changes in phonon occupancy following excitation, our

goal is to discover how these arbitrary occupations of phonons manifest in the diffuse

scattering patterns that are experimentally accessible. Our description of ultrafast

scattering ended with elastic Bragg scattering, where we uncovered the Laue condition,

as well as concepts such as single-scattering conditions in thin films. To expand the

description to ab-initio ideas, we expand our notions of scattering to the phonon normal

mode formalism, which, while discussed previously, is described more precisely in the

following.

5.1 QUANTUM FIELD THEORETIC APPROACH TO VIBRATIONS ON A LATTICE

Within the first Born-Oppenheimer approximation, real material systems do not have

clamped nuclei, meaning that they vibrate owing to finite temperature. As such, particular

vibrational modes are occupied with Bosonic statistics. In the normal mode approxi-

mation, we ascribe these vibrations to oscillations in independent harmonic oscillators

63



64 FIRST-PRINCIPLES APPROACH TO UED

called phonons. As bosons, these quasiparticles can be described in a field theoretic

picture, characterized by annihilation and creation operators a and a† respectively. In the

following section, we focus on the contribution of these lattice waves to the diffraction

patterns resulting from single electron scattering. This thesis does not concern itself

multiple scattering effects such as Kikuchi lines [56], either from thick samples or thin

samples with heavy atoms.

5.1.1 Second quantization of lattice waves

The atom κ, located in the pth unit cell, is displaced from its position in thermal equilib-

rium τpκ = Rp + xκ by a vector ∆τpκ. We recast Eq. (2.9a) into:

| f (1)(Q)|2 =

∣∣∣∣−
me

h̄2
V̂(Q)

∣∣∣∣
2

=
m2

e

h̄4
V̂(Q)V̂⋆(Q)

=
m2

e

h̄4 ∑
κ,κ′

∑
p,p′

fe,p(Q) fe,p′(Q)e−iQ·(τpκ−τp′κ′ )e−iQ·∆τpκ e
iQ·∆τp′κ′

=
m2

e

N2
p h̄4 ∑

κ,κ′
∑
p,p′

fe,p(Q) fe,p′(Q)e−iQ·(τpκ−τp′κ′ )〈e−iQ·∆τκ eiQ·∆τκ′ 〉 (5.1)

where we use the fact that, for an infinite crystal, atoms κ and κ′ are uncorrelated, so

summing over these atoms is equivalent to a thermal average: 〈 〉 = (1/Np)∑κ.

The scope of this section is to derive the primary scattering intensities resulting from

elastic and inelastic scattering, equivalent to approximating these thermal averages to

zeroth and first orders in the atomic displacements. Later in this work, we will derive a

more in depth derivation of infinitely correlatedmotions of pairs of atoms using complete

basis sets of vibrational states |χαn〉, and exactly evaluate these thermal expectations.

Within the harmonic approximation, where phonons can be described by indepen-

dent harmonic oscillators, we first need to determine the Lagrangian for the system and

thus the equation of motion (EOM). In the harmonic picture, the EOM is based solely

on the second-order interatomic force constants (c.f. Eq. (3.9a)), yielding an equivalent

description of Newton’s Second Law for the lattice using the dynamical matrices of
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Eq. (3.10):

∑
κ′α′

(
Dκκ′

q

)
αα′

(
εqνκ′

)α′
= ω2

qν

(
εqνκ

)α
. (5.2)

In this EOM, the eigenvalues are the vibrational frequencies of the harmonic oscillators,

and the eigenvectors εqνκ are the atomic displacements of atom α at a particular oscillator

momentum q and branch ν1. These two parameters completely describe the state of

the phonon, and as such allow us to assign a displacement operator for the phonon

in a second quanitzation scheme [46, 57]. In such a picture, with bosonic creation and

innhilation operators âqν and â†
qν, we write the phonon displacement operator:

ûpκ = ∑
qν

√
h̄

2µκ Nωqν

(
âqνe−iφpκqν + â†

qνeiφpκqν

)
eiq·τpκ

εqνκ (5.3)

where φ is the phase of the lattice wave. Equation (5.3) shows the total combined effect

of all phonons at unit cell p on atom κ in the basis.

To proceed, we need to implement what is sometimes referred to as the geometrization

of physics, by way of Hilbert spaces, where states and observables (like the thermal

average in Eq. (5.1)) are viewed as invariant geometric objects (as in groups), while

observers themselves (like our phonon operator ûpκ) are coordinate systems (as in

algebras). To this aim, to quantify how a composition of observables maps to the

original points in coordinate space2, we state the Campbell-Baker-Hausdorff theorem [58]:

Theorem 5.1. For operators X̂, Ŷ ∈ g(n, C), with g(n, C) a Lie algebra over Cn and exp the

exponentialmap from the Lie algebra to the Lie group, then exp(X̂) exp(Ŷ) = exp Ẑ is an infinite

sum of iterated Lie Brackets [ ], which are, in this context, the commutation operator.

exp Ẑ = exp(X̂) exp(Ŷ) = exp

(
X̂ + Ŷ +

1

2

[
X̂, Ŷ

]
+

1

12

([
X̂, [X̂, Ŷ]

]
+
[
Ŷ, [Ŷ, X̂]

])
+ · · ·

)

(5.4)
1From here on out, these will be called simply the phonon frequencies and eigendisplacements to beckon
back to their origins in the harmonic approximation.
2This is known as the Lie group-Lie algebra correspondence.
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f = exp(X)

g = exp(Y)

f g = exp(X)exp(Y)

X

Y

?

Lie algebra

Lie group

FIGURE 5.1: Visualization of the Campbell-Baker-Hausdorff theorem. Given objects in coordinate space
(the Lie algebra), X̂ and Ŷ, that are mapped into observables, f and g, the Campbell-Baker-Hausdorff
theorem identifies which point in coordinate space maps to the composition f ◦ g = exp X̂ exp Ŷ of the
two observables in the Lie group. Here, 1 is the identity element of the Lie group which serves as the point
of tangency for the Lie algebra.

Corollary 5.1. For â ∼ X̂ and â† ∼ Ŷ, since [âqν, â†
q′ν′ ] = δqq′δνν′ , we have that

[
X̂, [X̂, Ŷ]

]
=

[
Ŷ, [X̂, Ŷ]

]
= 0, and so:

exp Ẑ = exp X̂ exp Ŷ = exp{X + Y +
1

2
[X, Y]} (5.5)

We can finally evaluate the thermal average as follows. Utilizing the Bloch identity

〈eX̂〉 = e
1
2 〈X̂2〉 [59], we find:

〈e−iQ·ûκ eiQ·ûκ′ 〉 = e−
1
2 〈(Q·ûκ)2〉e−

1
2 〈(Q·ûκ′ )

2〉e
〈
(Q·ûκ)(Q·ûκ′ )

〉
= e−Wκ e−Wκ′ e

〈
(Q·ûκ)(Q·ûκ′ )

〉
(5.6)

where contributions to the thermal average resulting from autodisplacement are the

well-known Debye-Waller factorsWκ [60, 61]. Recall that we are interested in determining
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the primary contributions to these inelastic terms in the thermal average, corresponding

to approximating the exponential with its zeroth and first order terms, given explicitly

by e
〈
(Q·ûκ)(Q·ûκ′ )

〉
= 1 + 〈(Q · ûκ)(Q · ûκ′)〉 + O(|ûκ|2|ûκ′ |2). This approximation cor-

responds to all contributions to the scattering form factor that results from at most

single-phonon inelastic diffuse scattering. For simple crystal structures, such as SnSe,

MoS2, and graphite, this approximation is valid, but there are classes of materials where

multi-phonon diffuse scattering is actually the dominant contribution, such as black

phosphorus [62]. We then evaluate:

〈(Q · ûκ) (Q · ûκ′)〉 =
h̄

2N ∑
κ,κ′

∑
qq′

(
Q · εqνκ

) (
Q · εqνκ′

)
√

µκµκ′ωqνωq′ν′
eiq·τpκ e

iq′·τp′κ′

×
〈[

âqνe−iφpκqν + â†
qνeiφpκqν

] [
âq′ν′e

−iφp′κ′q′ν′ + â†
q′ν′e

iφp′κ′q′ν′
]〉

=
h̄

2N ∑
ν

∑
q

(
Q · εqνκ

) (
Q · εqνκ′

)

ωqν
√

µκµκ′
eiq·τpκ e

iq·τpκ′
[
2n̂qν + 1

]

=
h̄

N ∑
ν

∑
q

(
n̂qν + 1/2

ωqν

)((
Q · εqνκ

) (
Q · εqνκ′

)
√

µκµκ′

)
eiq·τpκ e

iq·τpκ′ (5.7)

where we introduced the phonon occupancy operator n̂qν , âqν â†
qν = â†

qν âqν − 1, as well

as noting that the phases across unit cells are not correlated, cancelling cross terms.

5.1.2 Scattering amplitude

We now can finally evaluate the scattering intensity from up to first order inelastic

scattering events. In such a framework where we prepare an initial state of the probing

electron |ki〉 to scatter to a final state |k f 〉, our operators now become observables, and
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as such as can reformulate Eq. (5.1) into the following:

| f (Q)|2 =
m2

e

N2
p h̄4 ∑

pp′
∑
κκ′

fe,κ(Q) fe,κ′e
−iQ·(τpκ−τp′κ′ )e−Wκ e−Wκ′ [1 + 〈(Q · ûκ)(Q · ûκ′)〉]

=
m2

e

N2
p h̄4

∣∣∣∣∣∑pκ

fe,κ(Q)e−Wκ e−iQ·τpκ

∣∣∣∣∣

2

+
m2

e

NN2
p h̄3 ∑

qν

nqν + 1/2

ωqν

∣∣∣∣∣∑pκ

fe,κ(Q)e−Wκ

√
µκ

(
Q · εqνκ

)
e−i(Q−q)·τpκ

∣∣∣∣∣

2

=
m2

e

h̄4

∣∣∣∣∣∑
H

∑
κ

fe,κ(Q)e−Wκ e−iQ·xκ

∣∣∣∣∣

2

+
m2

e

NN2
p h̄3 ∑

qν

nqν + 1/2

ωqν

∣∣∣∣∣∑pκ

fe,κ(Q)e−Wκ

√
µκ

(
Q · εqνκ

)
e−i(Q−q)·Rp e−i(Q−q)·xκ

∣∣∣∣∣

2

(5.8)

where Lemma 2.2 simplified the first term in this expression. To simplify the sum over

momenta q, we recognize that for a given scattering vector Q, there will be a Bragg

peak (reciprocal lattice point) closest toQ s. t. the scattering vector can be expressed

Q = HQ + q0, where q0 is a phonon momentum lying within the first BZ, see Figure 2.1.

Noting that eigendisplacements are periodic throughout the reciprocal lattice3, we can

use Lemma 2.3 and Eq. (2.9b) to arrive at expressions for the diffraction intensities. The

first term of Eq. (5.8) yields the elastic Bragg scattering:

I0(Q) =
m2

e

r2h̄4

∣∣∣∣∣∑
H

∑
κ

fe,κ(Q)e−Wκ e−iQ·xκ δ(Q−H)

∣∣∣∣∣

2

(5.9)

We note that this is equivalent to our previous result, except with the addition of

the Debye-Waller term taking into account suppression of Bragg peak intensities owing

to changes in atomic mean-squared displacement (MSD) resulting from, for example,

finite temperature. The second term of Eq. (5.8) yields the inelastic single-phonon diffuse

scattering:

3Namely, εq0νκe−iHQ ·xκ = ε(q0−HQ)νκ = εq0ν, which effectively removes the phase in Eq. (5.8).
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I1(Q) =
m2

e

r2Nph̄3 ∑
ν

nqν + 1/2

ωqν

∣∣∣∣∣∑κ

fe,κ(Q)e−Wκ

√
µκ

(
Q · εqνκ

)
∣∣∣∣∣

2

= Ie ∑
ν

nqν + 1/2

ωqν
|F1ν(Q)|2

(5.10)

where F1ν(Q) are known as the one-phonon structure factor, named to emphasize the dif-

ference between the static structure factor in Eq. (2.9a). The F1ν are geometrical weights

that describe the relative strength of scattering fromdifferent phononmodes anddepend

sensitively on the atomic polarization vectors
{

εqνκ

}
[63]. Most importantly, F1ν (Q) are

relatively large when the phonon mode ν is polarized parallel to the reduced scattering

vector q. These phonon scattering selection rules mean that F1ν for the out-of-plane

(Z-polarized)modes are very weak in the geometry of these experiments4. The amplitude

of the diffuse scattering, excluding these geometric weights, indicates that higher occu-

pation of modes results in increased vibrational amplitude as the displacement of atoms

is linear in phonon occupancy. Likewise, renormalized vibrational frequency reduces

the restoring force of the harmonic oscillator and increases the vibrational amplitude.

The key introductions made by moving to a second quantization scheme have been

(i) the Debye-Waller factors, allowing us to now relate transient changes in atomic MSD

to Bragg peak intensities, as well as (ii) the first order inelastic scattering that allows

for direct observation of increase or suppression of phonon occupancy at arbitrary

momentum. Further chapters of this thesis further explore the diffuse scattering in-depth,

and discuss avenues through which we can further exploit the one-phonon structure

factors, such as extracting energy resolution.

4These experiments normally probe layered materials along the stacking axis (in [001] for ẑ the stacking
axis).
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5.2 EXACT EVALUATION OF ENSEMBLE AVERAGES

The limitation with the previous approach is that it would rely on manual calculation

of various commutators and formulae for every order of phonon scattering, which

is already untenable by the second order. Many samples will have dominant multi-

phonon scattering effects. To this point, nowarmedwith nqν(τ) fromour dynamic theory

calculations, we can begin to compute the dynamical structure factor of photoexcited

materials using a different approach. Newfound techniques of Zacharias et al [64] can

be used for inexpensive computation of the diffraction intensity to all orders. The

total scattering intensity I(Q; T) for a given lattice temperature T can be evaluated

using the Laval-Born-James (LBJ) theory [65, 66, 67]. Iteratively evaluating the LBJ

formula for the simulated TDBE phonon occupations at a given time delay yields time-

resolved diffuse scattering intensities resulting from all scatterers of the probing electron

bunch. These sequential simulations in turn allow direct comparison of the UEDS

measurements to first principles results. The critical difference in the following ab-initio

approach from the previous expression of the diffraction intensity given in Eq. (5.8) is

a more robust treatment of the thermal averages e
〈
(Q·ûκ)(Q·ûκ′ )

〉
in Eq. (5.6). We have

hitherto approximated this expression up to zeroth and first order, but we now develop

a formalism to exactly compute these correlations in a way that allows for immediate

identification of all order inelastic scattering contributions to the diffraction intensity.

In what is known as the Born-Huang expansion [68], we can determine the intensity

of a wave scattered by the crystal [69] as:

Iαn,βm(Q) =

∣∣∣∣∣

〈
χαn

∣∣∣∣∣∑pκ

fκ(Q)eiQ·[τpκ+∆τpκ ]

∣∣∣∣∣ χβm

〉∣∣∣∣∣

2

. (5.11)

Here, 〈χαn|, |χβm〉 are the initial and final vibrational eigenstates of modes m, n, for a

given initial and final electronic states α, β. We now make the Born-Oppenheimer ap-

proximation to place electrons in their ground-state for the evaluation of the vibrational

modes, i. e. α = β = 0 =⇒ |χ0n〉 , |χn〉, to obtain the adiabatic scattering intensity in
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the electronic ground-state:

In(Q) =
〈

χn

∣∣∣I{τ}(Q)
∣∣∣ χn

〉
(5.12a)

I{τ}(Q) =

∣∣∣∣∑
pκ

fκ(Q)eiQ·[τpκ+∆τpκ ]

∣∣∣∣
2

. (5.12b)

Here, Eq. (5.12b) is the scattering intensity resulting from an instantaneous atomic con-

figuration
{

τpκ

}
. We can now take the ensemble average over these instantaneous

nuclear configurations at finite temperature using the canonical partition function

Z = ∑n exp{−En/kBT}, yielding the desired scattering intensity:

I(Q, T) =
1

Z ∑
n

exp{−En/kBT}In(Q) . (5.13)

In order to evaluate this thermal average, wemove to the normalmodephonon formalism,

where the atomic displacements can be written in terms of the phonon eigendisplace-

ments.

∆τpκ =

(
µ0

Npµκ

)1/2

∑
qν

eiq·Rp
εqνκzqν (5.14)

with zqν the complex normal coordinates [70]. We can now express the nuclear wavefunc-

tion |χn〉 as aHartree product of uncoupled harmonic oscillators and the nuclear energies

En as a sum on the corresponding quasiparticle energy quanta. It can be shown, via the

use of Hermite polynomials and Mehler’s sum rule [71, 72, 73], that the LBJ scattering

intensity can be written in the following integral formulation

I(Q, T) =
〈

I{τ}(Q)
〉
= ∏

qν

∫
dzqν

πu2
qν

e−|zqν|2/u2
qν I{τ}(Q) (5.15)

with u2
qν = h̄

2M0ωqν
[2nqν(T)+ 1]being theatomicMSD.Using theBloch identity 〈eiQ·∆τpκ〉 =

e−
1
2 〈(Q·∆τpκ)2〉, Eq. (5.14), and the ensemble average of the normal coordinates 〈zqνz∗q′ν′〉 =

u2
qνδqq′δνν′ , it can be shown [74] that the phonon-induced scattering intensity that results

from all phonon scattering processes for a temperature T can be written as:
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Iall(Q, T) = Np

Np

∑
p

∑
κκ′

fκ(Q) f ∗κ′(Q)eiQ·[Rp+xκ−xκ′ ]e−Wκ(Q,T)e−Wκ′ (Q,T)e
Pp,κκ′ (Q,T)

(5.16)

The exponent of the Debye-Waller factor is defined as:

−Wκ(Q, T) = − µ0

Npµκ
∑

q∈B,ν

|Q · εqνκ|2u2
qν −

µ0

2Npµκ
∑

q∈A,ν

|Q · εqνκ|2u2
qν (5.17)

where A (B) denote the sets of phonons that are (not) related by time-inversion. The

exponent of the phononic factor is defined as:

Pp,κκ′(Q, T) =
2µ0N−1

P√
µκµκ′

∑
q∈B,ν

u2
qνℜ

{
(Q · εqνκ)(Q · ε∗qνκ′)e

iq·Rp

}

+
µ0N−1

P√
µκµκ′

∑
q∈A,ν

u2
qν(Q · εqνκ)(Q · εqνκ′) cos(q · Rp) . (5.18)

Note that the dynamic phonon occupations of the TDBE appear in both the Debye-

Waller and phononic factors via the computed MSD. Formulae for Bragg scattering,

one-phonon, and multi-phonon contributions to the scattering intensity correspond

to the zeroth-order, first-order, and all higher order terms of the Taylor expansion of

the phononic factor, exactly corresponding to our truncation of the thermal average in

Eq. (5.6) to orderO(|ûκ|2|ûκ′ |2), etc. For Bragg and one-phonon terms, noting Lemma 2.2

and that I0(H, T) = I0(−H, T), the zeroth and first order terms can be written explicitly.

I0(Q, T) = N2
p ∑

κκ′
fκ(Q) f ∗κ′(Q) cos{Q · (xκ − xκ′)}

× e−Wκ(Q,T)e−Wκ′ (Q,T)δ(Q−H) (5.19)

I1(Q, T) = Np ∑
κκ′

fκ(Q) f ∗κ′(Q)
e−Wκ(Q,T)e−Wκ′ (Q,T)

√
µκµκ′

×∑
ν

ℜ
{

Q · εQνκQ · εκ′∗
QνeiQ·[xκ′−xκ ]

}
u2

Qν (5.20)
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Note 5.1!
The fine grids of these calculations are computationally inexpensive since they do

not involve extra ab-initio steps, and so these calculations act as a post-processing

step. The expense is in computing the interatomic force constants, where the

method of generation is not constrained in this framework.

It is clear that Eq. (5.19) agrees with the previous formulation of Bragg scattering of

Eq. (5.9) by decomposing the repeated sum into a modulus, with the phase factor not

impacting the magnitude of the scattering. For the diffuse scattering, recalling u2
qν =

h̄
2M0ωqν

[2nqν(T) + 1], we can readily rewrite Eq. (5.20) to see that the LBJ theory recreates

our previous result for the diffuse scattering in Eq. (5.10). By supplying the time- and

momentum-resolved temperatures computed with the TDBE, we can now determine

I(Q, τ), and provide direct comparison with experimental signals.

5.3 SPECIAL DISPLACEMENT METHOD

While exact, the evaluation of the William-Lax thermal average limits the theory to the

case of infinite lattices, removing any possibility of scattering from crystal defects, or

other localized finite effects such as polarons. A finite lattice theory which allows for

the evaluation of William-Lax thermal averages of the functional form in Eq. (5.15) was

developed only recently in 2020: the special displacement method (SDM) [71, 75] . The

SDM corresponds to determining the collection of scatterers (namely, displacements of

which atoms in which unit cells) that best recreate the thermal diffuse scattering in the

material. It can be shown [71] that such atomic displacements are of the form:

∆τ
ZG
pκ ,

√
µ0

Npµκ

[
∑

q∈B,ν

Sqνuqν2ℜ
{

eiq·Rp
εqνκ

}
+ ∑

q∈A,ν

Sqνuqν cos{q · Rp}εqνκ

]
. (5.21)

Here, we have set |zqν| = uqν, and allocated signs Sqν of these normal coordinates. To

determine these signs, namely the weights of each scatterer, practical calcuations follow
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q q q

FIGURE 5.2: Illustration of a partitioning of a reducible BZ on an 8× 8 Γ-centered grid of a square reciprocal
space lattice. Here, A and B are as in Eq. (5.17), and C is the set of momenta of opposite sign as B.

Algorithm 3. To recreate the diffuse scattering intensity, we need only add these ZG

displacements to those found in Eq. (5.12b):

IZG(Q; T) =

∣∣∣∣∣∑pκ

fκ(Q)eiQ·[Rp+τκ+∆τ
ZG
pκ ]

∣∣∣∣∣

2

(5.22)

The energy cost associated with only assigning a finite number of scatterers to the lattice
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Algorithm 3 Determination of signs of ∆τ
ZG
pκ

Precondition:
phonon frequencies ωqν and eigendisplacements εqνκ,

Postcondition: Signs of ZG scatterers Sqν

1 function ZG ENERGY MINIMIZATION(ωqν, εκ
qν)

2 Fourier interpolate phonon properties to same q-grid as the Debye-Waller and
phononic factors

3 Organize the phonon frequencies and eigendisplacements along simple space-
filling curve through all q points

4 Enforce smooth Berry connection between eigendisplacements at adjacent q-
points

5 Instantiate 2νmax−1 unique combinations of signs to every 2νmax−1 q-point
6 for idt ∈ Niter do ⊲ Iterate over each atom
7 Compute ZG energy of the system
8 if EZG

idt − EZG
idt−1 < ∆Etol then return ωqν, εqνκ

9 else
10 Update Sqν

must be minimized in the choice of signs, given by:

EZG({Sqν}, T) = ∑
κ′α′,κα

∣∣∣∣ ∑
q∈B,ν<ν′

ℜ{(εqνκ)
α(εq′ν′κ′)

α′}uqνuqν′SqνSqν′

+ ∑
q∈A,ν<ν′

(εqνκ)
α(εq′ν′κ′)

α′uqνuqν′SqνSqν′

∣∣∣∣
2

. (5.23)

Minimization of this energy ensures that nonperturbative error is eliminated and the

anisotropic MSD tensor of Eq. (5.24) is recovered, the diagonal elements from which

determine the Debye-Waller factors.

Uκ
αα′(T) =

2µ0

Npµκ
∑

q∈B,ν

ℜ{(εqνκ)(ε
∗
qνκ)

α′}u2
qν +

µ0

Noµκ
∑

q∈A,ν

(εqνκ)
α(εqνκ)

α′ . (5.24)

One can show [75] that the terms involving q ∈ A identically will vanish in the limit of

dense Brillouin zone sampling, leaving only contributions from phonon wavevectors not

related by inversion (modulo a reciprocal lattice vector). Such partitioning of phonon

momenta in the BZ is illustrated in Figure 5.2.

While seemingly tedious to describe various theories of transient ultrafast scattering,

it is necessary to illustrate the ideas needed to explain experimental signatures in the
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materials considered in this thesis. The next section shows the experimental validation

of the exact theory on a 2D material, demonstrating the robustness of the approach

even in a system with pronounced quantum effects, such as dielectric and Coulomb

screening, excitons, and more. Subsequent chapters expand the theory to incorporate

spin- and valley-tronic effects. Finally, scattering from finite (localized) defects, as well

as the impact of anharmonicity on diffuse scattering signatures, is integrated into these

formalisms.



Part III

TWO-DIMENSIONAL TRANSITIONMETAL

DICHALCOGENIDES





6
The hexagonal miracle

“Hexagons are the bestagons.”
—CGP Grey

Obviously existing in three spatial dimensions, most materials and their properties

are dependent on each of these dimensions. However, we can create and quantify other

systems where the physical size and/or material properties are functions of a reduced

number of dimensions. By removing one spatial dimension, we can convert a bulk

(3D) material into a two dimensional (2D) material. The first example of an isolated 2D

material was graphene, a perfectly hexagonal arrangement of carbon atoms, in 2004

[76]. Since then, many other bulk systems have had nanosheets synthesized from them

[77]. We can further reduce the dimensionality and create nanotubes (nanowires) that

only have material properties varying along a single spatial dimension (1D). In the most

extreme case, we can create nanometer-scale semiconductor particles quantum confined

in colloidal suspensions that behave as zero-dimensional (0D) systems called quantum

dots, first theorized in 1982, and first realised by Louis Brus in 1983 [78], an achievement

for which he earned the 2023 Nobel Prize in Chemistry.

While nanotubes and quantum dots have experimentally promising industrial appli-

cations, 2Dmaterials have yet to be fully taken advantage of, as the material properties of

79
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strictly two dimensions have been complicated to untangle and thus exploit. Whilst many

atomic configurations of bulk materials can yield 2D sheets [79, 80, 81], 2D transition

metal dichalcogenides (TMDs) are currently the subject of intense research. These are

materials whose atomic configuration is MX2, where M is a transition metal, and X is a

chalcogenide. In bulk, these materials have an indirect band gap transition, but in the

monolayer (1L), the transition is direct and in the visible range, yielding exciting electronic

and optoelectronic properties.

In general, there are a few key properties of 2D materials that have motivated their

exploration.

◮ VAN DERWAALS INTERACTIONS

Bulk TMDs are known as van der Waals (vdW)materials, 2D layers that are weakly bound

together by van der Waals interactions. In the bulk, these weak interactions cause low

tensile strength owing to the little force required to break these structural bonds. Con-

versely in themonolayer, only strong covalent bonds are present, making the engineering

of 2D Coulomb materials more promising than that of a materials’ bulk counterpart.

The breaking of vdW forces in graphite means, for example, that graphene has a tensile

strength 1000× greater than graphite [82].

◮ SURFACE AREA-TO-VOLUME RATIO

Owing to the increased surface area of 2D materials, they are much more susceptible

to environmental conditions than their bulk counterparts. Thermal transport, electron-

lattice coupling, andmany other properties are readily influenced by changes in dielectric

environment, external electric fields, and others [83, 84].

◮ IN-PLANE CONFINEMENT

In addition to the creation of a visible-range direct bandgap transition, the transforma-

tion from bulk to monolayer in TMDs also creates more strongly-bound excitons, due
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to the increased Coulomb interaction from the reduction of electron-hole screening

[85]. Both of these properties can be attributed to the lack of spatial inversion symmetry

(see Figure 6.1) the monolayer exhibits compared to the bulk [86], and can be tuned

depending on the number of layers present in the sample. Furthermore, combinations of

monolayers into heterostructures can create exotic optical, electronic, and vibrational

properties not found in the constituent materials, such as Moiré excitons [87].

◮ PHOTOVOLTAICS

Most TMDs, black phosphorous, and other 2D materials have bandgaps in the visible to

near infrared with impressive absorption capabilites such as absorbing as much light

in 1 layer of TMD as 100nm of silicon [88]. While insufficient to replace tradition high-

efficiency photovoltaics, modifications into heterostructures have allowed monolayer

TMDs to achieve as high as 108 A/W of optical sensitivity [89, 90]. Furthermore, since

the bandgap and work function of these materials can be tuned [85], 2D TMDs find

applications as the electron transporting layer (ETL) or hole transporting layer (HTL) for

organic and pervoskite solar cells [91]. Whilst promising tunable electronic properties of

2D materials have been put forth, there is much reconsiliation to be done between the

2D materials community and the conventional solar cell community, such as the tradeoff

between the increase in conductivity of graphene ETLs/HTLs with the number of layers

and the corresponding reduction in transparency that is needed for low series and shunt

resistances (and thus efficient solar cells) [92].

◮ ARTIFICIAL HETEROSTRUCTURES

With the advent of monolayer materials, we can stack various layers of potentially con-

trastingmaterials to create artificially hetero-structured vdWmaterials that exhibit exotic

properties. By stacking two sheets of graphene at specific twist angles (relative to the

local hexagonal symmetry), researchers have been able to find “magic angles” s. t. the

heterostructure is insulating (blocking all electron flow), or exhibits unconventional
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superconductivity [93]. Phononic mechanisms in such systems can also be tunably renor-

malised by varying the same twist angle [94]. Furthermore, electronic band structures,

inter-layer excitons, resulting charge carrier scattering mechanisms, and more can be

arbitrarily tuned in such systems [95, 96, 97].

◮ VALLEY- AND SPINTRONICS

These (opto)electronic properties arise from the highly correlated nature of TMD’s spin

[98, 99], valley [100, 101], electronic [102], and vibrational [103] degrees of freedom which

can vary dramatically with the number of layers, most notably with the breaking of

inversion symmmetry in monolayers. In 1L-MoS2, strong spin-orbit coupling additionally

[104] allows for direct control of the spin and valley degrees of freedom [86, 100] and

the possibility of exciting chiral phonons [105, 106]. The coupling of monolayers in

heterostructures [107], moiré superlattices [87, 108] or to underlying substrates [109] and

modified dielectric environments [110] have opened further avenues for wide tunability

in properties and control of these correlated phases.

Many effects in these (and other) 2D materials arise specifically from the interplay

between electronic and vibrational degrees of freedom, namely EPC. However, unlike

their 3D counterparts where EPC is a fundamental property of the materials, EPC should

be uniquely sensitive to the environment of a 2Dmaterial where the Coulomb potential is

known to be poorly screened within the 2D layer [111]. It is this EPC that drives the unique

properties of monolayers, and is the focus of most TMD research. Experiments probing

the electronic state of TMDmonolayers have been developed most, from time-resolved

angle-resolved photoemission spectroscopy (trARPES) of the bandgap renormalization

in 1L-MoS2[85], to magnetophotoluminescence measurements of exciton and trion for-

mation [112], and others. There have been less efforts aimed at probing the vibrational

system, as the means to do so reliably have been lacking.

Here we show that UED combined with the recently developed technique of UEDS

can provide a momentum-resolved picture of the nonequilibrium phonon dynamics that
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follow photocarrier generation in monolayer MoS2. This electron analog of ultrafast

diffuse x-ray scattering [113, 114] has previously providedmomentum-resolved information

on inelastic electron-phonon scattering [62, 115, 116, 117], soft phonon physics [7], and

polaron formation [118] in bulk materials. The extension of this technique to monolayers

is possible due to advancements in instrumentation and the large enhancement in atomic

scattering cross section for electrons compared to x-rays (see Note 2.1.2). This provides

access to novel phenomena, including effects of the local dielectric environment on EPC

within the monolayer.

6.1 MATERIAL PROPERTIES

1L-MoS2is a single layer of the bulk van der Waals polytype 2H−MoS2, in which each

molybdenum atom is coordinated by sulphur atoms in a trigonal prism geometry that

lacks inversion symmetry (see Figure 6.1). The monolayer has a Hermann-Mauguin

spacegroup of P6̄m2, or D3h Schöenflies symbol, with hexagonal two-dimensional Bril-

louin zone, and a real-space lattice parameter of 3.16 Å (determined from relaxed self-

consistent calculations). The reciprocal space has the following high-symmetry points

(in reduced coordinates): Γ : (0, 0, 0), M : (1/2, 0, 0), K : (1/3, 1/3, 0).

In its bulk, MoS2 is a semiconductor with an indirect bandgap that has mainly found

use as dry lubricant, owing to its layered structure and low interlayer coefficients of

friction. For this same reason, it is also relatively easy to prepare few-layer samples

of MoS2, as the weak interlayer vdW interactions are easily broken under mechanical

exfoliation. The first true characterization of a monolayer TMD was made only in 2010

[119], when advancements in materials synthesis allowed for the repeated removal of a

controlled number of layers from the bulk mother crystal. There are other “bottom-up”

synthesis approaches to produce monolayer TMDs, such as chemical vapour deposition
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FIGURE 6.1: Illustration of the broken inversion symmetry in the monolayer TMD. The chalcogenide gets
mapped to any empty site under inversion about the unit cell center, expliticly breaking time-inversion
symmetry in these materials, affording exotic effects like enhanced spin-orbit coupling, and chiral degrees
of freedom in the electronic and vibrational systems.

(CVD)1 [120, 121], molecular beam epitaxy (MBE)2 [122, 123, 124], and electrochemical

deposition (ED)3 [125, 126, 127], but the resulting samples feature small in-plane areas,

and usually have many compositional and impuriy defects. Further, many parameters

will impact the physical qualities of the sample, making this process more complex

and expensive than the methods mentioned previously. Its advantage, however, is its

large scalability once the recipe for efficient, stable generation of monolayers has been

achieved [128]. This is what makes mechanical exfoliation the de facto protocol for

1This approach relies on the reaction of heated precursor gases (containing the necessary atoms) with
the substrate in a furnace, condensing and forming thin layers of the material.
2This relies on the epitaxial deposition of crystal by a beam of the target material in UHV.
3This relies on covering a plate with cations by means of electric current.
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manufacturing of these materials, as it has repeatedly provided many samples with large

in-plane areas needed for transmission microscopy.

Note 6.1!
The techniques of Liu et al were used to generate the 1L-MoS2sample onto the

supporting Si:N substrate [129]. A 150 nm-thick Au film was deposited onto a

Si wafer (from Nova Electronic Materials) with e-beam evaporation (0.05 nm/s).

Polyvinylpyrrolidone (PVP) solution (from Sigma Aldrich, mw 40000, 10% wt in

ethanol/acetonitrile wt 1/1) was spin-coated on the top of the Au film (1500 rpm,

acceleration 500 rpm/s, 2 min) and then heated at 150 °C for 5 min. A piece of

thermal release tape was used to pick up PVP/Au film and was then gently pressed

onto a freshly cleaved bulk MoS2 single crystal (from HQ graphene). The thermal

release tape was gently lifted up and a MoS2 monolayer is left, attached on the

Au. The MoS2 monolayer was then transferred by pressing the PVP/Au film with

MoS2 monolayer onto a 30 nm thick amorphous silicon nitrite (Si:N) TEM window

(Norcada). The thermal release tape was then removed by heating at 130 °C. The

PVP layer was removed by dissolving in deionized (DI) water for 2 h. Themonolayer

covered by Au was rinsed with acetone and cleaned by O2 plasma for 3 min. After

removing the Au cover with a gold etchant solution (2.5g I2 and 10g KI in 100 mL DI

water), the monolayer on substrate was rinsed with DI water and isopropanol, and

dried under N2 flow.

6.2 ELECTRONIC PROPERTIES

There aremany rich features to be found in the electronic structure of 1L-MoS2, informing

on the vibrations that can result following photoexcitation in this material. In Figure 6.2

is the in-plane view of the crystal structure, with the corresponding reducible BZ and its

high symmetry momenta labelled, followed by the electronic band structure through the
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FIGURE 6.2: A synopsis of relevant crystallographic and electronic properties of 1L-MoS2. (a) The in-plane
view of the lattice structure, showing the coordination of chalcogens about the transition metal. (b) The
reciprocal lattice structure, with high-symmetry momenta labelled in addition to the reciprocal lattice
vectors. (c) Computed electronic band structure, with (distinct) coloration in the valence and conduction
manifolds representative of the electron occupation for a chemical potential equivalent to a photo-doped
charge carrier density of 1014 cm−2.

typical path for hexagonal BZs. The most remarkable property of the material is the tran-

sition from an indirect semiconductor to a direct in the monolayer limit, with a direct gap

of 1.68 eV. Following ultrafast photoexcitation, this band-gap is renormalized (increase

of the valence band maximum) by ∼ 100meV, resulting in the following biexponential

behaviour; the inital quick reduction in band-gap results from (i) the poorly screened

Coulomb potential and strong many-body interactions within the monolayer, and (ii)

the intense Auger recombination in the material [130]. The slow recovery to equilibrium

conditions and re-establishment of the band-gap owes to intrinsic (non)radiative decays

in the monolayer [131] (although it is worth mentioning how long it takes for radiative

carrier recombination [132, 133, 134]).

Note 6.2!
The following discussion does not take into consideration spin-orbit coupling

(SOC), which is indeed pronounced in this material. The spin-splitting of the bands

will be discussed in detail in Chapter 8.
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It is clear that the K point contains interesting properties, but it must be noted that

there is an additional high symmetry point, namely Q : (1/6, 1/6, 0), that serves as the

location in the conduction manifold of the indirect electronic band gap transition, see

Figure 6.2c. Electrons (holes) are occupied mainly around K and Q (K and Γ) for an

example carrier concentration of 1014 cm−2. It can be shown that the 6-fold degenerate

pocket at Q limits electron relaxation and leads to an increase in carriers around this

point[52]. This suggests population inversion is possible here, and illustrates pathways

through which electrons are excited by the ultrafast laser pulse in a UEDS experiment.

With incident photoexcitation at, for example, 400nm≃3.1 eV, electrons are injected into

the conduction manifold at Γ from the valence manifold at Γ, from which hot carriers

rapidly randomize their momentum to the occupation states given in Figure 6.2c. From

here, the high level of symmetry affords many pathways for scattering with the phononic

system. A brief qualitative depiction of the available pathways is given in Figure 6.3,

where the role of the Q point becomes clear: a satellite valley necessary to completely

understand the EPC in this system.
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FIGURE 6.3: Available pathways for hot carrier relaxation via phonon scattering, determined by conserva-
tion of energy and momenta.

6.3 EXCITONS AND TRIONS

Owing to the poor Coulomb screening at the 2D limit, 1L-MoS2has (in)direct bright

(dark) excitons with some of the largest known binding energies, on the order of ∼

700meV. The complex structure of these excitons, as well as the many-body extensions

of biexcitons and trions, have been mapped extensively before [112], and have illustrated

exotic behaviours not found in sibling materials. While the real-space picture of excitons

is well established (either in the Wannier or Frenckel pictures), the theory to rigorously

decide the impact these quasi-particles have on, for example, the true band-gap of a

material, is tedious and detailed. As fully quantum objects, excitons cannot be easily

incorporated into the discussed ab-initio phonon dynamics simulations of Chapter 4.

Such an inclusion would be inconsistent and inaccurate, since the methods used herein,

such as the TDBE, are semi-classical, only first order in derivatives with respect to time,

and describe only the evolution of statistical distributions. Therefore, to enter into a
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regime where the exciton densities subsume the single-body electron (hole) occupations

makes the resulting phonon dynamics impossible to determine in the current theoretical

framework, a point discussed in more detail in Section 8.3.

To brielfy illustrate the complexity of such a description, below in Eq. (6.1) is what

is known as the Bethe-Salpeter equation (BSE) [135], giving the four-point reducible

polarizability 4L of two-particle interactions (between the hole and the electron), thus

containing all the information needed to describe the energy of such a state. We write

the Hamiltonian of the corresponding polarizability as:

H
(mn)(m′n′)
exc = ∆GWδmm′δnn′ + ( fm − fn)〈mn|v−W|m′n′〉 →

{
Eλ, |Aλ〉

}
(6.1)

where∆GW is theGW band-gap, fm ( fc) the occupancy of themth (nth) band, andm (n) the

wavefunction of the corresponding state. m (n) is usually taken to be the band that holds

the valence manifold maximum (conduction manifold minimum). Its solution produces

the eigenenergies Eλ of the resulting excitonicwavefunctions |Aλ〉. TheFeynmandiagram

equivalent of this equation is given in Figure 6.4, illustrating more clearly the role of the

v andW interactions found in the BSE.

The inclusion of excitons into a TDBE-like framework is at the cutting-edge of current

theory [136], and the complicated exciton-phonon interactions, while calculable [137],

are not discussed further here.
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FIGURE 6.4: BSE for excitons. Here, v is the repulsive e-h exchange interaction (dipole-dipole), and −W is the attractive e-h direct interaction
(monopole-monopole). For small-gap semiconductions and metals, the excitonic correlation will be screened owing to the reduction in the
corresponding v andW interactions. This equation is intrinsically two-particle, and as such, its solution necessitates the determination of the
propagation of two particles. The corresponding four-point equation is extremely computationally expensive to solve, although possible [138, 139].



7
Photoexcited MoS2

“The belief in a single truth is the root cause for all evil in the world.”
—Max Born

Owing to the nature of the 2D geometry of a monolayer, the ability to perform trans-

mission electron diffractometry on such a sample is unclear. There are many considera-

tions that can impact the performance of pump-probe spectroscopy that are primarily:

(i) the low signal-to-noise ratio (SNR) of diffraction intensities, and (ii) background con-

tributions, either from the installation medium of the sample into the vacuum chamber

or from ambient reflected photoexcitation directly illuminating the detector. Both of

these affects are more easily dealt with in samples of thicknesses& 30 nm, owing to the

increased probability of electron scattering events in such ”thick” samples and increased

absorption of the photoexcitation into the total material system.

7.1 BRAGG DYNAMICS

7.1.1 The use of monolayer in a heterostructure

Before beginning to examine dynamics of the monolayer following photoexcitation, such

sources of noise must be dealt with. Since the electrons scatter off of only ∼ 0.7nm

91
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thick material, the SNR in these monolayer UEDS experiments is the primary limitation

and requires that the sample be uniformly illuminated by the full electron beam of the

instrument. This requires monolayer samples on the order of 100s µm in width. At these

sizes, freestanding monolayer TMD films are unstable, and there are no literature reports

to date on freestanding monolayer TMD films of the size (i.e. in-plane area) required.

Free-standing TMD or graphene films, however, in the 1-10 µm range have been reported,

either on TEM grids [140] or etch holes [141].

This necessitates the use of a supporting silicon nitride (Si3N4, abbreviated Si:N)

ceramic substrate, a wide-band gap (∆Eg = 5 eV) ceramic (to avoid absorption of the

photoexcitation and thus direct heating) which is largely transparent to the electron

beam. Unfortunately, while this substrate is essential to performing these experiments, it

contributes ∼ 97% of the diffraction intensity across the image, meaning only ∼ 3% of

the electron beam probes the monolayer, which is why SNR optimization is critical.

Fortunately, scattering from the Si:N substrate due to heating shows very weak

and diffuse changes. These changes vary smoothly with scattering vector, Q, and

do not contribute to observed intensity variations within a single BZ reported here.

Clearly, one-photon absorption is not possible with 3.1 eV (400nm) excitation. Further-

more, the nonlinear absorption coefficient of Si:N under similar excitation conditions

is γSi:N =1.75m−1W−1, orders of magnitude less than other structures noted for their

strong multi-phonon absorption behaviour [142], such as GO-Si structures with γ =

167m−1 W−1 . Additionally, the measured two-photon absorption coefficient of Si:N is

∼ 2.9 · 10−8 cm/GW, which is extremely negligible [143]. We therefore safely ignore two- /

multi-phonon absorption in Si:N from our photoexcitation conditions.

Whilst not directly exciting dynamics in the substrate, we may at late times observe

changes in the diffuse ring intensity from the Si:N, as heat exchanges from the monolayer

to the substrate. The extracted background from the Si:N rings is varying only on the
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order of

δIBG = ĨBG(τ = 200 ps)− ĨBG(τ = 10 ps) = 0.005% (7.1)

in normalized intensity (integrated over all |Q|), compared to a corresponding δI(300) ≃

2.5% change in Bragg intensity. Because of ∼ 103 ratio in the difference in heating-

induced changes in intensity between the monolayer and the substrate, and the drasti-

cally different momentum scales over which this heating of the heterostructure occurs,

we approximate the contribution of the substrate to the diffraction pattern as static

diffuse rings, namely Isub(Q, τ) ≃ Isub(|Q|), see Figure 7.1. This is consistent with our

estimation of the change in temperature of the substrate based on the energy of the

pump transmitted through the monolayer and the heat capacity of Si:N, about 2.5 ◦K.

Therefore, the substrate contribution to the UEDS pattern can be robustly removed with-

out introducing significant artifacts to the monolayer phonon-diffuse intensity within

the individual Brillouin zones that surround each Bragg peak. We have furthermore

performed UEDS experiments on Si:N alone under similar photoexcitation conditions

and have found no dynamics in the signals reported. This amorphous background

subtraction pre-processing step is applied to all diffraction patterns, and allows us to

directly determine the dynamics resulting from only changes in the nonequilibrium state

of the monolayer. Yet, the presence of the substrate still impacts the behaviour of the

monolayer owing to the heterostructure geometry. From the perspective of the mono-

layer, the substrate is a semi-infinite slab introducing strong dielectric features into the

environment, which nontrivially impact our observations.

Note 7.1!
The experiments about to be described used a monolayer of MoS2 mechanically

exfoliated onto a 3mm × 3mm × 30nm Si:N substrate with a 200µm×200µmwin-

dow size. The pump-probe experiment used 400nm photoexcitation at a fluence

of 1.82mJ·cm−2, with a time resolution of ∼170 fs.
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FIGURE 7.1: Comparison of the directly symmetrized data (left), the determined static diffuse background
contribution from the Si:N substrate (middle), and the diffraction pattern representative of only monolayer
dynamics (right), given by the difference.

7.1.2 Renormalized Dynamics

Propagation of the TDBE generates the local phonon occupations that arise from the

exchange of energy between the excited hot carriers and the lattice. We emphasize that

in these simulations, the influence of screening on the EPCmatrix elements is accounted

with its full momentum dependence within the MoS2 monolayer. The approximation

introduced in this work, therefore, involves only the substrate-induced screening. In

metals, the screening affecting EPCmatrix elements is indeed frequency and momentum

dependent, and it can be approximated by the Lindhard function as indicated in Eq.

(5) of Ref [46]. The situation, however, is different for semiconductors. The dielectric

function of large band-gap insulators is a smooth function ofmomentum, and it therefore

is a widely employed approximation to consider the screening of finite-q perturbation

via a momentum and frequency independent dielectric constant. The Si:N substrate is

a wide band-gap insulator which, in its crystalline form, has a band gap of 4.6− 5.2 eV.

These considerations are at the basis of the approximation introduced in our work and

we do not expect finite-q coupling to differ significantly from the case examined in our

simulations. We can therefore safely approximate the effective dielectric constant of the

system as the average permittivities of the semi-infinite slab, and the ambient vacuum

https://journals.aps.org/rmp/pdf/10.1103/RevModPhys.89.015003
https://journals.aps.org/rmp/pdf/10.1103/RevModPhys.89.015003
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conditions. As the instrument operates in ultra-high vacuum (UHV) conditions (p < 10−8

torr), the change in dielectric constant from pure vacuum represents 4 parts in 10,000,

and thus yields a negligible contribution to the permittivity used, namely the average of

the Si:N permittivity and ambient vacuum permittivity. We readily express this average

as:

ǫsub
∞ =

1

2
(ǫ∞ + ǫUHV

︸ ︷︷ ︸
≈1

) =
1

2
(ǫ∞ + 1) (7.2)

where ǫ∞ = 7.8 is dielectric constant of bulk Si:N [144, 145]. Depending on the substrate

material, the electronic properties of 2D TMDs might be affected significantly. As re-

ported, for example, in Ref. [146], ab-initioGWcalculations indicate that the quasiparticle

band gap and carrier effective masses of 1L-MoS2can be influenced by the substrate-

induced screening. However, as demonstrated in Ref. [147], the electronic structure of

MoS2 remains virtually unchanged when combined with a Si:N substrate. Most impor-

tantly, there is no qualitative change in the level alignment of the different valleys involved

in phonon-assisted hot-carrier relaxation. Therefore, we do not expect modifications in

the electronic band structure of MoS2 to play an important role in our calculations.

We must consider how the Kohn-Sham potential is affected by changes to the dielec-

tric environment. The first term of the KS potential is the electron-nuclear interaction,

which is Coulombic at large distances with nonlinear core corrections applied for small

distances, both of which are inversely propertional to the dielectric constant ǫ, and as

such are both renormalized by v→ v/ǫr. Lastly is the exchange-correlation potential.

While this potential is empirical and applied phenomenologically, all XC functionals

start in the local density approximation (LDA), where the XC energy is related only to

the electron density ρ via VKS
xc ∝ 1/ǫ0

∫
d3rρ4/3(r). Higher order approximations include

corrections to this, such as the generalized gradient approximation (GGA), including

terms O(∇ρ), or metaGGA including O
(
∇2ρ

)
, and so on [148]. All such approximations

rely on the electron density renormalized by the dielectric environment, ρ/ǫ. As such, the

entire KS potential energy will be renormalized by the relative dielectric constant, made
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manifest in a renormalization of the EPC strength via Eq. (3.14) (proven more concretely

in Eq. (143) of [46]). We write this normalization explicitly:

gν
mn(k, q)→ g̃ν

mn(k, q) = gν
mn(k, q)/ǫsub

∞ (7.3)

and thus the collision integrals of the TDBE in Eq. (4.16).

◮ ADDITIONAL CONSIDERATIONS

Excitons in 1L-MoS2are strongly bound and they are characterized by a binding energy

of the order on 1 eV [102]. Owing to the large excitonic energy, any coupling mechanisms

simultaneously involving excitons, phonons, and free electrons or holes is forbidden by

energy conservation. For example, the energy released by the formation of an exciton

can not be transferred to a single phonon, since lattice vibrations in MoS2 have energies

smaller than 60meV. For these reasons, one can expect the formation or annihilation

of excitons to be inconsequential for the non-equilibrium dynamics of the lattice, and

so we ignore excitonic interactions in this ab-initio scheme. This argument is not in

disagreement with the well-known temperature dependence of excitons in 1L-MoS2[149],

which manifests itself in an increased broadening of the excitonic peak in the absorption

spectrum for larger temperatures and suggests a coupling between excitons andphonons.

Indeed, in this case, the exciton-phonon interactions is mediated by the electrons, and

exciton broadening has been ascribed to the increased broadening of the electronic

bands.

7.1.3 Mean-squared displacements

We can now begin to examine the dynamics of the monolayer via the UEDS signals.

The immediate suppression of the Bragg peak intensities following photoexcitation is

mostly always attributed to the transient Debye-Waller effect, where laser light-induced

heating increases the effective atomic MSD 〈u2〉. Finite-temperature MSD modulates the

https://journals.aps.org/rmp/pdf/10.1103/RevModPhys.89.015003#page=24
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FIGURE 7.2: Photocarrier-phonon equilibration in 1L-MoS2as measured via Bragg peak Debye-Waller dynamics. (a) Relative change in (300) Bragg
peak intensity following photoexcition (blue circles). First-principles calculation of freestanding 1L-MoS2 (red curve) and inclusion of the dielectric
environment provided by the Si:N substrate (orange curve). The best fits (dashed lines) are given for long times, described by the 1D heat kernel
(see text). The inset highlights the long-term behavior of each signal, and the blue band represents the 1σ uncertainty bound on the data points. (b)
Increase in MSD extracted from Bragg intensity by eq 1. Red, orange, and dashed curves are shown as in (a). (c) Average phonon mode temperature
(momentum integrated) from ab initio simulations including the Si:N dielectric environment. Reprinted with permission from Ref [84]. Copyright
2022 American Chemical Society.
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q γ
exp
0 γs0 γus0 γ

exp
1 γs1 γus1 [ps]

Γ300 3.7± 0.1 3.607± 0.001 0.61± 0.02 52± 11 39± 2 29± 1
K 6.1± 0.3 2.472± 0.006 0.600± 0.001 19.37± 0.06 37.6± 0.1 29.4± 0.4
M 6.1± 0.2 4.40± 0.04 0.590± 0.003 25.20± 0.02 37.5± 0.1 28.7± 0.7
{A} 5.5± 0.1 3.567± 0.001 0.683± 0.004 85.9± 0.9 37± 1 29± 1
{LA} 3.0± 0.9 2.92± 0.03 0.336± 0.007 86.6± 0.3 39.8± 0.5 28.8± 0.3
{TA} 3.83± 0.04 3.617± 0.004 0.491± 0.004 67.6± 0.6 40.3± 0.7 29.0± 0.4

TABLE 7.1: Extracted time constants for all signals described in the main text. The rate of excitation/rise
(γ0) and relaxation/decay (γ1) are given in ps. Experimental (exp) fits, ab-initio results computed both for a
free standing film (us) and ab-initio results including the Si:N substrate dielectric environment (s).

diffraction intensity from scattering off the ideal lattice according to:

I(Q) = I0 exp

(
− 4

3
π2〈u2〉Q2

)
. (7.4)

Inverting this relationship allows for extraction of MSD as:

− 3

4π2

ln[I(τ)/I(τ<τ0)]

Q2
= 〈u2〉(τ)− 〈u2〉(τ < τ0) (7.5)

where τ0 is the pump-probe delay time corresponding to exact overlap of pump and

probe pulses, and I(τ < τ0) is the average pre-photoexcitation diffraction intensity. We

determine an effective relation between the phonon bath in the NLM and MSD [51, 150]

as:

〈u2〉(τ) = 3h̄

2M

∞∫

0

coth

(
h̄ω

2kBTeff(τ)

)
Dph(ω)

ω
dω (7.6)

where Dph(ω) is the total phonon DOS. To characterize only the macroscopic behaviour

of the lattice, as is needed for the experimental determination of MSD, we require the

total DOS, but extensions of Eq. (7.6) into the NLM can easily be made in order to

determine phonon mode resolved MSD 〈u2
ν〉(τ) corresponding to the specific mode

DOS Dν
ph(ω).

The transient rise in MSD provides an average measure of the rate at which pho-

tocarrier excitation energy is transferred to phonons in the monolayer, informing on

carrier-phonon equilibration through EPC. We compare these measurements directly

with the results obtained by combining together ab-initio calculations of nonequilibrium
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dynamics [52] and scattering intensities [64, 74] in Figure 7.2. The ultrafast dynamics

simulations for a free-standingmonolayer film are shown in red, predicting amuch higher

rate of MSD increase than that observed in the experimental data. When the dielectric

environment provided by Si:N is included using a semi-infinite slab model with no free

parameters, there is quantitative agreement between the rise is MSD measured and that

predicted within experimental uncertainties.

The average value of the freestandingmatrix elements gν
mn(k, q) for the LAandLO (E′)

phonon modes in free-standing 1L-MoS2at K are 19meV and 23meV respectively. These

are each reduced by a factor of ǫsub
∞ = 4.4 due to the presence of the Si:N dielectric envi-

ronment, providing a quantitative explanation for the approximately order-of-magnitude

reduction in the rate of photocarrier-phonon energy transfer compared to predictions

for a free-standing film (see Table 7.1). The inclusion of the renormalized EPC matrix

elements produces quantitative agreement between first-principles and experimental

results in both amplitude and rate of change.

The excitation energy has equilibrated between carriers and phonons in 1L-MoS2by

τ ∼ 10 ps, as shown by the peak value of MSD in Figure 7.2b. The roll-over and decay

of MSD for τ > 10 ps indicates the reduction in vibrational energy in the monolayer

due to phonon transport into the Si:N substrate (Figure 7.2c). The reported rise-time

for the MSD following photoexcitation (i.e. the observed Debye-Waller decay of Bragg

peak intensities) in the case of 1L-MoS2on sapphire is slower than reported here [151,

152], while the opposite is true for 1L-MoS2on SiO2 [153]. This is as expected based

on the dielectric constants of these substrate materials, providing additional evidence

in support of our conclusions regarding dielectric screening of the electron-phonon

interaction in 1L-MoS2.
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FIGURE 7.3: Schematic of heat transfer model for long times (τ > 20 ps). Instantaneous delivery of heat to
the system at (z, t) = (0, τ0) induces hot carriers which relax via energy exchange to the lattice. After such
time, the rate of heat exchange from the monolayer (lattice at the top) to the substrate (shown in blue
below) is modelled by the solution to the 1D heat equation (see text).

7.1.4 Cooling dynamics

Since photoexcitation was effectively uniform over the probed 250 µm region (< 10%

variation), thermal transport from the photoexcited monolayer into the Si:N substrate

is well described as one-dimensional (1D) on picosecond timescales; a delta-function

heat impulse (following photoexcitation of the monolayer) diffuses into the substrate.

For later times after the hot carriers have exchanged their free energy to the monolayer

lattice, dynamics in the monolayer ι+ are dominated by the exchange of heat to the

substrate, modelled by the 1D heat diffusion equation as follows.

Heat across a bulk system, u(x, t), can be described in the following partial differential
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equation:

∂tu(x, t) = D∇2u(x, t) (7.7a)

u(x, 0) = f (x) (7.7b)

lim
|x|→∞

u(x, t) = 0 ∀t (7.7c)

(x, t) ∈ R
n × [0, ∞) (7.7d)

where f (x) is initial heat profile along the bulk, D the diffusion coefficient, and we further

assume the ends of the bulk are pinned to a heat sink (u = 0). To be able to understand

how such a system repsonds to impulse, we define what is known as the two-point1

Green’s function G(x, x′; t, t′), the definition of which is that the Green’s function describes

the system response from instantaneous stimulus at one point (x, t) to another (x′, t′).

Definition 8 (Green’s Function). For any linear operator L , L(x) : Rn → Rn, the

one-point Green’s function G(x, x′) is any solution L G(x, x′) = δ(x′ − x). This implies

directly
∫

LG(x, x′) f (x′) dx′ =
∫

δ(x′ − x) f (x′) dx′ = f (x), and noting that L does not

act on the variable of integration, we find f (x) = L
( ∫
G(x, x′) f (x′) dx′

)
, which means

u(x) =
∫
G(x, x′) f (x′) dx′ is a solution to the equation Lu(x) = f (x).

To determine the Green’s function of our model system, we Fourier transform Eq. (7.7)

with respect to space:

∂tũ(k, t) = −D|k|2ũ(k, t) (7.8a)

ũ(k, 0) = f̃ (k) (7.8b)

which has the unique solution of ũ(k, t) = f̃ (k)e−D|k|2t. By the Convolution theorem (a

product in Fourier space is a convolution in real-space), we note that:

F−1[e−D|k|2t] =
1

(4πDt)3/2
exp

{
− |x|

2

4Dt

}
, S(x, t) (7.9)

1This refers only to the fact that we are interested in the stimulated response with respect to two different
coordinates, which are, here, space and time.
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for x ∈ R3. We can then find the solution to the partial differential equation:

u(x, t) = ( f ∗ S)(x, t) =
∫

R3
f (x′)

1

(4πDt)3/2
exp

(
−|x− x′|2

4Dt

)

︸ ︷︷ ︸
G(x,x′;t,0)

d3x′ (7.10)

where we have now identified our Green’s function G(x, x′; t, 0) for D , κ/cpρ the thermal

diffusivity, dependent on the thermal conductivity κ, specific heat capacity cp, and

mass density ρ. In the one-dimensional case presented here, this Green’s function

G(z, τ; 0, 0) ≃ G(z, τ) satisfies:




Gt(z, τ)− DGzz(z, τ) = 0 τ ∈ R× (0, ∞)

G(z, 0) = δ(z) z ∈ R× [0, ∞)

(7.11a)

G(z, τ) =
1√

4πDτ
exp

(
− z2

4Dτ

)
(7.11b)

Using Neumann boundary conditions and noting that for our ultrafast photoexcitation,

u(z, 0) = g(z) ≈ δ(z), we find that the dynamics in the monolayer we observe, which lie

approximately on the atomic interface at z = 0, are given by:

ι+(τ) =
∫

R+
G(z− ζ, τ − τ+

0 )g(ζ)

∣∣∣∣
z=0

dζ

=
1√

4πD(τ − τ+
0 )

∫ ∞

0

[
exp

(
− (z− ζ)2

4D(τ − τ+
0 )

)
+ exp

(
− (z + ζ)2

4D(τ − τ+
0 )

)]∣∣∣∣
z=0

g(ζ)dζ

=
2√

4πD(τ − τ+
0 )

exp

(
− z2

4D(τ − τ+
0 )

)∣∣∣∣
z=0

−→
[

A1√
4πκ(τ − τ+

0 )
+ B1

]
(7.12)

where τ+
0 is the time that signifies the “end” of carrier cooling. Fitting to the extracted

lattice effective temperature (by invertingEq. (7.6) for Teff(τ)), wedetermine the constants

A1 and B1. Using the photoexcitation conditions and calculated interlayer spacing (based

on the vdW strength of 1L-MoS2and Si:N), we make the necessary unit conversion s. t.

the extracted thermal conductivity κ = 313± 4 Wm−1K−1 is in standard units. This
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model provides an excellent fit of the data for long times in Figure 7.2, far superior than

a single exponential decays, yielding a thermal conductivity in reasonable agreement

with simulated and experimental values in the c-axis of Si:N [154, 155]. We conclude the

thermal boundary resistance between 1L-MoS2and Si:N in the heterostructure is small.

7.2 DIFFUSE DYNAMICS AT HIGH SYMMETRY MOMENTA

The increase in MSD determined from the Debye-Waller suppression of Bragg peak

intensities does not uniquely define the microscopic state of the phonon system. In

contrast, UEDS measurements together with ab-initio simulations yield unprecedented

details of mode- and momentum-resolved nonequilibrium phonon population distribu-

tions in the monolayer that underlie the changes in MSD observed via the Bragg peak

dynamics. The transient UEDS signals from 1L-MoS2 following photoexcitation show

the strongest increases at the K, M, and Q points of the BZ, shown in Figure 7.4. The

time- and momentum-resolved phonon excitation dynamics at each of these points in

the BZ are in good agreement with our ab initio predictions, provided the effects of Si:N

substrate dielectric screening are included (see Figure 7.4b-e).

These combined UEDS and first-principles analyses show that the nonequilibrium

state of the phonon system several picoseconds after photoexcitation is profoundly

anisotropic in momentum. This anisotropy is primarily determined by the momentum-

dependent electron-phonon interaction strength and the available inelastic electron-

phonon scattering pathways that are open to the hot carriers. These pathways are

constrained by the electronic band structure and carrier distribution (c.f. Figure 6.3) and

explain the observed and computed momentum-dependent phonon heating dynamics.

Within 5 − 10ps, the carrier and phonon systems in 1L-MoS2 have equilibrated with

respect to the partition of excitation energy, but the phonon system remains profoundly

out of equilibrium internally.
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FIGURE 7.4: Momentum-resolved phonon re-equilibration dynamics. (a) All-phonon differential diffuse scattering pattern of 1L-MoS2 calculated
from first-principles as ∆I = I(Q, τ = 5ps)− I(Q, T = 300K). The inset (upper left) is the thermal differential diffuse scattering pattern calculated
as ∆I = I(Q, T = 380K)− I(Q, T = 300K). The temperature of 380 K corresponds to an effective lattice temperature as extracted from the observed
MSD at τ = 5 ps (see text), shown on the same color scale. Black hexagons indicate BZ boundaries. Regions for which data are shown in (b-d) are
indicated with the matching color. (b-d) Relative change in diffuse intensity at the reduced scattering vectors (b) K, (c) M, (d) LA phonons at Q and
for (e) TA phonons at Q. Signals are obtained by integration over the colored regions in (a), as well as over every visible BZ (see the Supporting
Information). Acoustic signals are extracted by integrating over the segmented annuli given in (a), with LA and TA distinction possible due to
phonon scattering selection rules. Red and orange curves are shown as in Figure 7.2. Reprinted with permission from Ref [84]. Copyright 2022
American Chemical Society.
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FIGURE 7.5: Comparison of MSD cooling dynamics with phonon anharmonic decay at K up to 150ps
following photoexcitation. Reprinted with permission from Ref [84]. Copyright 2022 American Chemical
Society.

Previouswork hasdemonstrated thepossibility of defining a time-dependent effective

phonon temperature, Teff(τ), that corresponds to the observed MSD using the model

[51] in Eq. (7.6). However, such a Teff(τ) provides a misleading view of the nonequilibrium

state of the phonon system during carrier-phonon equilibration. This is illustrated in

Figure 7.4a, where the nonequilibrium phonon-diffuse differential scattering intensity at

5 ps is compared with a thermalized phonon-diffuse differential intensity distribution

at Teff(5ps) = 380 K (inset), the effective temperature determined by Eq. (7.6) and the

measured MSD at 5ps (c.f. Figure 7.2). The phonon population distribution in 1L-MoS2is

still profoundly nonthermal and is not well described by an effective temperature.

Further relaxation of these anisotropic nonequilibrium phonons in 1L-MoS2involves

coupling processes internal to the monolayer and heat transfer between the monolayer

and Si:N substrate in the heterostructure. These distinct processes are both resolved by

these measurements. In Figure 7.5, the diffuse intensity dynamics at K out to 150ps are



106 PHOTOEXCITED MOS2

ν τ
ph−ph
Γ,ν (ps) τ

ph−ph
K,ν (ps)

1 50.90 52.89
2 97.98 245.99
3 48.67 61.41
4 59.29 17.89
5 33.47 17.74
6 21.95 26.99
7 23.43 29.38
8 18.50 14.69
9 18.45 7.87

TABLE 7.2: Phonon-phonon equilibrium relaxation times at q = Γ, K at room-temperature in 1L-MoS2.

compared against the MSD dynamics extracted from the Bragg peaks, whose ∼ 50ps

decay time (single-exponential fit) indicates the cooling rate of the monolayer to the

underlying substrate. The observed decay of diffuse intensity at K is in poor agree-

ment with these MSD dynamics, indicating that a different process is involved. The

single-exponential decay time constant determined for the dynamics at K is 25ps, twice

as rapid as the MSD dynamics but in good agreement with the ab-initio anharmonic

decay rate of the E′ optical phonons at K (22ps), to which UEDS is most sensitive, see

Table 7.2. The observed decay of the MSD is, however, in reasonable agreement with the

decay in phonon-diffuse scattering measured for both the mid-BZ LA and TA modes,

whose heating dynamics are shown in Figure 7.4d,e. For times <30ps, this subnanoscale

phonon transport across the 1L-MoS2/Si:N heterostructure interface involves a pro-

foundly nonequilibrium population of phonons in the monolayer, including a much

higher occupancy of high-wavevector acoustic phonons than would be expected of a

thermalized distribution. These conditions are the result of phonon (heat) transport

across the monolayer-substrate interface occurring on time scales similar to those for

the nonequilibrium phonon relaxation within the monolayer itself. UEDS provides a

direct, momentum-resolved window on subnanoscale phonon transport in this far-from-

equilibrium regime.

This work has shown the following two key points. Firstly, inelastic scattering experi-

ments are not only possible but sensitive enough to detect the extremely small changes
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in intensity at the edges of each BZ even at the 2D limit. Secondly, the developed theory

that exactly determines the William-Lax thermal averages is also sensitive enough to

take into describe non-standard 3D materials, with the provided modifications. Having

shown that an accurate and precise enough theory exists that can be probed by exist-

ing instrumentation, we continue by expanding the theory to now incorporate circular

dichroism, and explore the effects of chiral phonons in this context.





8
Pseudo-Angular Momentum and Effects of

Circular Dichroism
“Wemathematicans are all a bit crazy.”

—Lev Landau

In 2D systems that feature strong SOC [156, 157, 158] such as 1L-MoS2 or WSe2, the

coupled spin and momentum-valley physics [104] allow for direct control over valley,

spin, and vibrational degrees of freedom [86, 100] using circularly polarized light. Pho-

toexcitation can be used to generate electron hole pairs in either the K or K′ region of the

BZ, where the carriers have opposite orbital angular momentum. The selective excitation

of carriers in terms of both orbital (angular) and valley momentum has been termed

carrier valley-polarization.

From the perspective of the phonons, hexagonal lattices also exhibit unusual features

not found in other space groups. Typically, phonon normal modes in single crystal sys-

tems feature phase mismatched linearly polarized atomic displacements. At the K-points

of a 2D hexagonal lattice, however, three-fold symmetry results in the atomic displace-

ments associated with certain optical and acoustic phonon modes executing circular

orbits. In bulk (layered) hexagonal materials, these left and right circularly polarized

109
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K-point phonons tend to be degenerate and do not carry net angular momentum since

the basis atoms tend to precess in opposite directions. However, in monolayer TMDs the

presence of strong SOC and broken inversion symmetry lifts the degeneracy of circular

polarized phonons near K and K′, and yields phonon modes with non-zero pseudo-

angular momentum (PAM). These chiral phonons possess finite Berry curvature1 and can

therefore induce a phonon Hall effect, making them prime candidates in unraveling the

origins of the thermal Hall effect in many quantum systems, such as Kitaev spin liquids

(eg. α-RuCl3 [160]), cuprate superconductors [161], spin ices [162] and frustrated magnets

[163].

Taken together, these unusual features of the carriers and phonons near K (K′)-points

are expected to yield unusual handedness to the EPC in monolayer TMDs. Specifi-

cally, during the relaxation of an initially valley-polarized (hot) charge carrier distribu-

tion, the equilibration of valley polarized carriers involves intervalley (K - K′) transitions

that require a change of orbital angular momentum, raising questions about angular

momentum conservation. One intervalley relaxation channel that conserves both an-

gular momentum and energy is chiral electron-phonon scattering. Such interactions

are thought to be an important factor in the process of valley depolarization. Here,

we propose an experimental procedure for direct observation of the nonequilibrium

time- and momentum-dependent chiral phonon formation involved in the process of

valley depolarization. The approach proposed is based on ultrafast electron or x-ray

techniques that measure the time-dependence of phonon-diffuse scattering following

optical excitation [113, 115]. While indirect methods have been proposed to observe chiral

phonons via their signature in the thermal Hall effect [164], and the observation of chiral

phonons have been reported [106] via circular dichroism in the optical transmission

of the material, such methods do not directly measure chiral phonon emission. The

hallmark of chiral phonon emission during carrier valley depolarization is the generation

1Proving so its not relevant here, but can be shown using similar approaches as those found in Ref [159].
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IR Basis Functions Band

A′ ΨM
2,−2, 1√

2

(
Ψ

X1
1,−1 + Ψ

X2
1,−1

)
VB

A′′ ΨM
2,1, 1√

2

(
Ψ

X1
1,−1 −Ψ

X2
1,−1

)
CB + 1

E′1 ΨM
2,0, 1√

2

(
Ψ

X1
1,1 + Ψ

X2
1,1

)
CB

E′2 ΨM
2,2, 1√

2

(
Ψ

X1
1,0 −Ψ

X2
1,0

)
VB-3
CB+2

E1′′ ΨM
1,0, 1√

2

(
Ψ

X1
1,1 −Ψ

X2
1,1

)
VB

E2′′ ΨM
2,−1, 1√

2

(
Ψ

X1
1,0 + Ψ

X2
1,0

)
VB-1

TABLE 8.1: The orbital representations in the C3h point double group (irreducible representations (IRs) at K
in 1L-MoS2), giving the corresponding label of the band relative to the valence (conduction) bands. Time-
reversal symmetry relates the K and K′ valleys. Here, the basis functions are given in terms of spherical
harmonics Y of quantum numbers (l, m) on the η atom as [166] Ψ

η
l,m(k, r) = 1√

n ∑Rn
eik·(Rn+tη)Ym

l

(
r −

[Rn + tη ]
)
.

of a momentum-valley polarized phonon distribution. The direct measurement of such

a transient phonon distribution during carrier-valley depolarization in 1L-MoS2 using

ultrafast diffuse scattering is the focus of this chapter. Overall, the goal is to build on our

UEDS developements on 1L-MoS2 [84] and open a window on chiral phonon generation.

8.1 SPIN- AND VALLEYTRONICS

It has been long known [165] that at the K point in TMDs of chemical formulae MX2, the

valence band is dominated by the |dx2−y2〉 and |dxy〉 (E symmetry) orbitals on M (with

small contribution from |px〉 and |py〉 on X) while the conduction band is primarily |dz2〉

(A1 symmetry) on M. The valence hybridization at the valley is given by

|Ψv〉 =
1√
2

(
|dx2−y2〉+ iτ|dxy〉

)
(8.1)

where these combinations are the only allowed owing to theC3h point group symmetry of

the hexagonal lattice. We include a summarizing table of the relevant orbitals in Table 8.1.

Application of the prime generator of this point group at the valleys, namely threefold
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rotation symmetry about the out-of-plane (parallel to the c crystal axis)R{2π/3, ẑ}, allows

for determination of the azimuthal quantum numbers ℓ in the valence and conduction

bands. By defining a valley index τ = ±1 that denotes the K (K′) valley, we find:

R{2π/3, ẑ}|Ψτ
v〉 = |Ψτ

v〉 = eiℓv2π/3|Ψτ
v〉 =⇒ ℓv = 0 (8.2a)

R{2π/3, ẑ}|Ψτ
c 〉 = eiτ2π/3|Ψτ

c 〉 = eiℓc2π/3|Ψτ
c 〉 =⇒ ℓc = τ (8.2b)

showing that intravalley interband transitions are allowed so long as they obey the

following selection rules. In the intervalley scattering by phonons, the whole system has

threefold rotational symmetry, implying the selection rule of the angular momentum

quantum number ℓ:

ℓc(v)(K)− ℓc(v)(K
′) = ±1 (8.3)

by emitting a circularly-polarized valley phonon (ℓph = ±1). Since the minimum of

the conduction band valleys in 1L-MoS2are dominated by the ℓ = 0 d orbitals on the

Mo atoms [104], they bear an overall azimuthal quantum number mτ = τ = ±1 at K

(K′). Likewise, the top of the valence bands have no azimuthal quantum number, so

m = 0. Conservation of the PAM experienced by the system then dictates a selection

rule ∆m = ±1. By including the incidence of a photon, we can expand the selection rule

to determine:

∆ℓel = ±ℓph ± ℓphoton (8.4)

where + is emission and − is absorption2.

To see that it is possible to directly control the valley and spin indices of the charge

carrier simultaneously requires ascribing a Hamiltonian to this system. The system

Hamiltonian Ĥ will have a contribution from a free propagating electron Ĥ0, from the

SOC ĤSO, and from k · p̂ theory Ĥk·p̂. This model will use Lowdin Partitioning [167] to

eliminate the degrees of freedom from the proven 7-bandmodel [168] so that we canwrite
2It is worth realizing that these angular momentum quanta obey, in this case, a modular arithmetic owing
to the 3-fold symmetry of point group, where the effective quantum ℓeff for a given ℓ satisfies ℓ ≡ ℓeff

mod 3. For example, ℓ = 2 =⇒ eiℓ2π/3 = ei4π/3 = ei(−1)2π/3 =⇒ ℓ = −1, satisfying 2 ≡ −1 mod 3.
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the Hamiltonian in the new spinful basis. Defining |s〉 = {↑, ↓} and |Ψc(v), s〉 = |Ψc(v)〉 ⊗

|s〉, we write the free Hamiltonian as Ĥ0 = (h̄2k2/2m)(12 ⊗ σ̂z), where the identity matrix 1

operates in electron-hole space, and σ̂z is the Pauli matrix for the 2 basis functions3. While

the full 7 band model is needed to accurately capture all features of the electronic system

[166], such as trigonal warping at the valleys and the spin-splitting of the conduction

band, we need only introduce terms linear in the momentum in order to accurately

determine the dominant transition mechanisms, given by a simple massive Dirac fermion

model. We can write the off diagonal elements of the the Hamiltonian in the k · p̂ picture

as h̄/2me(k+ p̂− + k− p̂+) , Ĥ− + Ĥ+, where α± = αx ± iαy. Therefore,

Ĥk·p̂ =




〈
Ψv, s

∣∣∣ h̄2 p̂2

2me

∣∣∣Ψv, s
〉 〈

Ψv, s
∣∣Ĥ+

∣∣Ψc, s
〉

〈
Ψc, s

∣∣Ĥ−
∣∣Ψv, s

〉 〈
Ψc, s

∣∣∣ h̄2 p̂2

2me

∣∣∣Ψc, s
〉




=




εVB atτk−

atτk+ εCB




= at

(
τkx




0 1

1 0



+ ky




0 −i

i 0




)
+

∆

2




−1 0

0 1




= at(τkxσ̂x + kyσ̂y) +
∆

2
σ̂z (8.5)

where energies are given relative to the Fermi level, ∆ is the band-gap, a the lattice

constant, and t the effective hopping integral. To determine the contribution of SOC

to the Hamiltonian, we note we can write L̂ · Ŝ = L̂zσz + L̂+σ− + L̂−σ+, where L̂ is the

angular momentum operator and Ŝ is the vector of spin Pauli matrices. In this derivation,
3From here onward, we omit the technically correct Kronecker product of the local identity operator for
simplicity.
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we note that L± transforms as the E′′ irreducible representation (IR) of C3h (see Table 8.1),

and such we can obtain the following relations for the full 7-band model:

C+
3 L±C+†

3 = e∓2πi/3L± (8.6)

〈s, Ψv|L−S+|Ψv−1, s〉 = ∆(v,v−1)S+ (8.7)

〈s, Ψv|L+S−|Ψv−1, s〉 = 〈s, Ψv|LzSz|Ψv−1, s〉 = 0 (8.8)

With Lowdin partitioning, we assume only nearest neighbor bands couple strongly, and

we expect only a diagonal matrix proportional to the spin-splitting in each band of the

basis. In our chosen two-band basis (where time-reversal symmetry (TRS) relates the

valleys), one can show [166] we can express this as :

ĤSO =
h̄

4m2
e c2

1

r

dV(r)

dr
L̂ · Ŝ =




τ∆VBsz 0

0 τ∆CBsz︸ ︷︷ ︸
≈0



= −τ∆VB

σ̂z − 1

2
ŝz (8.9)

where ŝz is the Pauli matrix for spin.

We emphasize spin-splitting is a general consequence of inversion symmetry breaking,

and is not dependent on the model Hamiltonian used here. The complete 7-band model

correctly predicts coupling between all bands and spin-splittings in the conduction

manifold that are not present in the 2-band model. Furthermore, spins are completly de-

coupled and so the spin quantum number sz (eigenvalues sz = ±1 of the spin Pauli matrix

ŝz) remains a good quantum number. This lets us write the entire electron Hamiltonian,

first derived by Xiao et al. [100, 169], as:

Ĥ = at(τkxσ̂x + kyσ̂y) +
∆

2
σ̂z − τ∆VB

σ̂z − 1

2
ŝz (8.10)

where we omit the free Hamiltonian as it does not contribute to the physics herein.

From here, we can compute the degree to which circularly polarised photoexcitation

couples to electronic transitions via the transition amplitudes of the interband momenta
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operators, namely:

P± = Px ± iPy (8.11a)

Pα , m0

〈
uc

∣∣∣∣
1

h̄

∂Ĥ

∂kα

∣∣∣∣ uv

〉
(8.11b)

where u is the periodic part of the Bloch wavefunction [170] in the valence (v) and

conduction (c) bands. In terms of the spin-split band gap ∆′ , ∆−∆VBτsz, the transition

amplitudes are:

|P±(k)|2 =
m2

0a2t2

h̄2

(
1± τ

∆′√
∆′2 + 4a2t2k2

) ∆′≫atk
=

m2
0a2t2

h̄2
(1± τ) (8.12)

where ab-initio calculations predict [156] that for TMDs, ∆′ ≫ atk. Optical fields cou-

ple only to the orbital part of the wave function and spin is conserved in the optical

transitions. We therefore obtain the following excitation rule; transitions of electrons

to the conduction band (and creation of holes in the valence band) in a definite valley

are allowed by photoexcitation of handedness τ (from the perspective of the sender)

at energy at least ∆′. The stability of the electronic valley polarization has been verfied

experimentally in many different TMDs [100, 171, 172, 173], where the photoexcitation

will either generate an exciton (bound electron-hole pair) gas or electron-hole plasma,

according to the photoinduced free charge carrier density.

8.2 SCATTERING SELECTION RULES

Note 8.1!
The following section discusses the IR at the high-symmetry momentum Q, but in

order to distinguish the IR from the scattering vector Q or high-symmetry momen-

tum Q, the high-symmetry momentum is labelled Λ, and the equivalent IR is L. In

the literature, this valley is sometimes also referred to as the Σ or T valley.
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Selection Rule Process
Intravalley: (K1 ×K∗1)∗ = Γ1 Mainly hole relaxation

(L1 ×L∗1)∗ = Γ1 Electron relaxation
(Γ1 × Γ∗1 )

∗ = Γ1

Intervalley: (K3 ×K∗2)∗ = K3 Cond. electron scattering
(K1 ×K∗1)∗ = K1 Valence hole scattering
(L1 ×K∗3)∗ = L1 Hot carrier accumulation
(Γ1 ×K∗1)∗ = K1 Carrier thermalisation

TABLE 8.2: Spin-conserving selection rules of the C3h point group. The nature of the scattering process
is given, well as an example of such a process in practice. The rule (A× B∗)∗ = C should be read as a
transition from electron momenta A to B requires a mediating phonon of momentum C.

Owing to the hexagonal symmetry of these lattices, we consider the representations

of the high symmetry points in the C3h point group4. By defining C+
3 as the anticlockwise

threefold rotation, and recognizing the conduction band at K is dominated by |dz2〉 on

M, we know the corresponding IR ζ must satisfy:

ζ × C+
3 = ω∗, ζ × C−3 = ω, ζ × σh = +1 (8.13)

for ω = exp(i2π/3) by noting the exponential factor of Eq. (3.5) is determined by the

lattice sites, given by the Γ3 IR (in our notation now K3 IR). By TRS relating the valleys,

we know analgously that the IR of the conduction band at K′ (ζ ′) must satisfy:

ζ ′ × C+
3 = ω, ζ × C−3 = ω∗, ζ × σh = +1 . (8.14)

Therefore, K2 is the IR for the primary conduction band at K′.

The local atomic wavefunctions in the valence band obey all symmetries of the C3h

double group and thus must transform as unity, obviously Γ1 → K1 at K. TRS implies

that the IR at K′ is K∗1 = K1. We can further describe the Λ valleys in the conduction

band (along the ΓK axis) by the C1h point double group.

This gives us the following spin-conserving selection rules in Table 8.2. The spin-

flipping selection rules can be determined by continuing assignment of the spin-split

valence and conduction bands at the high sym points (Γ, Λ, K) to determine allowed

processes using the corresponding point double groups.
4We consider the C3h point double group for spin-split representations.
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As will be important later, we now show that using the C3h point double group,

resolving the spin splitting states, we can expand the selection rules as follows5. We

know that for the valence bands at the K valleys, the IRs of spin-split states (χ and χ′)

must satisfy:

χ× Ē = −1 (8.15a)

χ× C̄+
3 = ω (8.15b)

χ× C̄−3 = ω∗ (8.15c)

χ′ = χ∗ . (8.15d)

These are given by K7 and K8 IRs at K. To determine the energy ordering of these states,

we recognize that at K, the valence band, |dx2−y2〉+ i |dxy〉, has orbital magnetic moment

m = 2 which implies that the spin angular momentum of the electron ℓs = +1/2 occupies

the higher energy state due to the positive spin-coupling coefficient. This requires the

higher energy IR χ satisfy χ× σh = i, meaning that at K, the higher energy state is K7,

and lower energy is K8. TRS shows the opposite is true at K′. We note this implies a new

intervalley selection rule between the spin split states (K8 ×K∗7)∗ = K6. These IRs are

superimposed on the spin-split band structure given in Figure 8.1a.

5Assignment of the conduction spin-split states is not germane here, and will be skipped.
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FIGURE 8.1: PAM conserving intervalley carrier scattering and ultrafast phonon diffuse scattering mea-
surements in 1L-MoS2 (a) Spin-split valence and conduction band structure of 1L-MoS2. The reducible
BZ is shown in green and the irreducible BZ in red, with high symmetry points labeled. Calligraphic
annotations denote the irreducible representations of the band structure at the corresponding high
symmetry points for a given spin-split band. (b) Bands along the K′ΓK direction with coloring identical to
(a). Photoexcitation with right-circularly polarized light (blue arrow) leads to a valley-polarized charge
carriers distribution around K. Left circularly polarized light drives excitation at K′ (not shown). Spin and
PAM conserving intervalley scattering processes for conduction (valence) band electrons (holes) to K′ (Γ).
Electron scatteringmust involve the emission of a chiral phonon (green arrow) and hole scattering can only
involve non-chiral phonons (purple arrow). The valence band shows pronounced energy splitting of the
spin states for monolayer TMDs (λv ∼ 100s of meV, much larger than even the highest-energy phonons).
The equivalent splitting in the conduction band λc is much smaller (< 10s of meV, smaller than all K or K′

phonons). (c) Schematic of the ultrafast diffuse scattering experiment. The sample is illuminated with
circularly polarized light, after which the system is probed with an electron/x-ray bunch at a pump-probe
delay time ∆t. Diffuse scattering for a single representative BZ surrounding the Bragg peak at Γ is shown
on the right. The colors of the K and K′ regions match the arrow colors for the corresponding process
illustrated in (b), allowing the separation of chiral electron scattering from non-chiral hole scattering.
Reprinted with permission from Ref [174]. Copyright 2023 American Physical Society.
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8.3 VALLEY-SELECTIVE EXCITON GENERATION AND DEPOLARIZATION

2D hexagonal lattices fall in the C3h point group (or point double group for spin-split

band structure Figure 8.1a), where the symmetry properties of the character table and

corresponding allowed intra- and inter-valley and band transitions have been well de-

termined [86]. The valley depolarization of excitons at low density has previously been

explained in 1L-MoS2 [175, 176] with reference to the electron-hole exchange interaction,

not carrier-phonon interactions. With regards to impact ionization as a depolarization

mechanism, even at n0 as low as 1012 cm−2, this carrier-carrier scattering has been shown

to only redistribute excited electrons (holes) in the conduction (valence) band between

K and K′ after 10ps (10 s of ns) [177]. More complicated carrier-carrier depolarization

mechanisms, as in the Dexter-like transport of momentum-separated excitons [178], be-

come less relevant at large n0 owing to the increased Coulombic screening of electrons

and holes, and thus broken electron-hole correlations. Therefore, at n0 greater than the

exciton Mott threshold to an electron-hole plasma in monolayer TMDs [179, 180, 181],

electron-phonon interactions are expected to be the dominant mechanism driving valley

depolarization of the charge carrier distribution. Thus, themeasurements proposed here

can, in principle, be used to monitor the transition from electron-phonon to exchange

dominated valley depolarization.

The dominant intervalley (K to K′) momentum (and energy) relaxation channels for

K-valley polarized conduction band electrons, (K3 ×K∗2)∗ = K3, are spin conserving,

but require a change in the aziumthal quantum number ℓ, as shown in Figure 8.1b. This

change in OAM can be provided by the emission or absorption of a chiral phonon at

K′ as we demonstrate in the next section. The equivalent process for holes requires a

spin-flip, (K8 ×K∗7)∗ = K6, due to the large valence band spin splitting and is expected

to be much slower. Spin-flip processes, such as the Bir-Aronov-Pikus mechanism [182] or

Dyakonov-Pevel mechanism [183], occur on longer time scales.
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The dominant intervalley (K to Γ) momentum (and energy) relaxation channels for

K-valley polarized carriers involves valence hole scattering, (Γ1 ×K∗1)∗ = K1, and is

allowed due to the spin and energy degeneracy at Γ as shown in Figure 8.1b. This channel

can only involve scattering from non-chiral K phonons, since there is no associated

change in OAM.

These details of hole scattering differ for selenide TMDs, where the valence band

maxima at K and Γ are not closely spaced in energy like they are for the sulfide TMDs. In

TMDs, it is also possible to exert some control over the relative valence energy at the Γ

point by introducing strain.

It is worth mentioning that in these materials, previous computational [52] and ex-

perimental [184] work has shown that excited electrons primarily occupy states in the

vicinity of the K and Λ valleys. These works further show that there is efficient scat-

tering between them, (L1 ×K∗3)∗ = L1, especially in the notable exception of WSe2
where the Λ valley is energetically below K. This would result in an increase of phonon

occupation at the six-fold degenerate Λ valleys. These works, however, use excitation

energy well above the band-gap s. t. charge carriers are occupied at Λ by the photoexci-

tation, which enables the efficient scattering to K. We can minimize the occupation of Λ

phonons by selective photoexcitation resonant with the A exciton (band-gap excitation).

Nonetheless, this scattering is momentum separated from the chiral K/K′ scattering in

momentum-resolved phonon diffuse scattering, meaning occupancy at Λ can be safely

ignored in the discussion of chiral phonons.

8.4 PSEUDO-ANGULAR MOMENTUM

To show that phonons in such a system can have ℓph 6= 0, we start by evaluating the

angular momentum operator for the crystal. For a given atomic motion, we can de-

termine its angular momentum (with respect to ẑ) as Jz = mr × ṙ, where ( ˙ ) , ∂t.
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Defining the atomic displacement vector of the κth atom in the pth unit cell as upκ =

(ux
p1 u

y
p1 · · · ux

pn u
y
pn)

T, we can define the total angular momentum of the crystal as:

Jz = ∑
pκ

mκupκ × u̇pκ = ∑
pκ

mκ

(
ux

pκu̇
y
pκ − u̇x

pκu
y
pκ

)

= ∑
p




ux
p1

u
y
p1

...

ux
pn

u
y
pn




T 


0 m1

−m1 0

. . .

0 mn

−mn 0







u̇x
p1

u̇
y
p1

...

u̇x
pn

u̇
y
pn




= ∑
p

uT
p i M′u̇p (8.16)

where M′ =
(

0 i
i 0

)
⊗ {mκ}, {mκ} is the n× n diagonal matrix of atomic masses, and ⊗

is the Kronecker product. By defining M =
(

0 i
i 0

)
⊗ 1n, we can apply second quanti-

zation to the atomic displacements in the normal mode coordinate formalism. These

displacements can be written as:

u
j
pκ = ∑

qν

(εqνκ)
jei ·(Rp·q−ωqνt)

√
h̄

2ωqνNmα
aqν + h.c. (8.17)

where h.c. denotes the Hermitian conjugate, and (εqνκ)j the jth component of the atomic

displacement of the κth atom at momentum q in mode ν at energy h̄ωqν, populated

according to the creation operator aqν. By ignoring terms like aa and a†a† (which vary

quickly and have no contribution in equilibrium), we express the total angularmomentum

in terms of these displacements as:

Jz =
h̄

2N ∑
t

∑
qq′

∑
νν′

ei(q′−q)·Rt e
i(ωqν−ωq′ν′ )t

×
{√

ωqν

ωq′ν′
ǫ†

qνMǫq′ν′a
†
qνaq′ν′ +

√
ωq′ν′

ωqν
ǫT

q′ν′(−M)ǫ∗qνaq′ν′a
†
qν

}
(8.18)

We note further that ε
T
q′ν′(−M)ε∗qν = ε

†
qνMεq′ν′ and 1

N ∑p ei(q−q′)·Rp = δq,q′ and that the

creation operators satisfy the commutation relation [aq,ν′ , a†
q,ν] = δν′ν, we can simplify
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this expression to obtain the nonequilibrium phonon angular momenta:

Jz =
h̄

2 ∑
qq′

∑
νν′

ε
†
qνMεq′ν′a

†
qνaq′ν′

{√
ωqν

ωq′ν′
+

√
ωq′ν′

ωqν

}

× δq,q′e
i(ωqν−ωq′ν′ )t +

h̄

2 ∑
qν

ε
†
qνMεqν (8.19)

In equilibrium, we know 〈a†
qνaqν′〉 = nqνδνν′ (n the phonon occupation, BE at thermal

equilibrium), and so we can express the total angular momentum as:

Jz = ∑
qν

ε
†
qνMεqνh̄(nqν + 1/2) , ∑

qν

ℓ
s
qν(nqν + 1/2) (8.20)

where the phonon angularmomenta at q is given by ℓs
qν. We emphasize that there are two

contributions to the total phonon angular momentum ℓph: (i) the local part yielding spin

PAM ℓs, coming from the eigendisplacements ǫ, and (ii) the nonlocal part determined

by eiRt·q yielding orbital PAM ℓ0. The sum of these contributions for each oscillating

sublattice yields the total phonon PAM.

Note that this implies at T = 0, each mode and momenta, the phononic system has

a zero-point spin PAM of (h̄/2)ε†
qνMεqν, in addition to the zero-point energy h̄ωqν/2.

Taylor expanding the BE distribution {ex − 1}−1 ≃ 1/x− 1/2 + x/12 + · · · , we find:

Jz(T → ∞) = ∑
qν

{
kBT

h̄ωqν
+

h̄ωqν

12kBT

}
ℓ

s
qν . (8.21)

Noting the completeness relation ∑ν ε
†
qν ⊗ εqν = 12n×2n, the closure relation for these

orthonormal atomic displacements can be shown [90] to yield

∑
ν

(εqν)i(ε∗qν)
j

ωqν
= 0 . (8.22)

We finally show that at high temperature, there cannot be spin angular momentum in the

system. This is consistent with the notion that at high temperature, atoms are equally

likely to be displaced in all directions, yielding cancelling contributions to the spin PAM:
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lim
T→∞

Jz(T) = ∑
qν

ℓ
s
qν

kBT

h̄ωqν
+ ℓ

s
qν

h̄ωqν

kBT
= ∑

q

j,i

Mji
✘
✘
✘

✘
✘
✘

✘
✘

✘✘✿
0

∑
ν

(εqν)i(ε∗qν)
j

ωqν
T +

1

kBT
ℓ

s
qνh̄ωqν = 0

(8.23)

There are additional constraints on this PAM that restrict the present of chiral phonons

in standard systems. Firstly, conservation of angular momentum dictates that the spin

angular momentum of the phonon modes must cancel, namely:

∑
ν

ℓ
s
qν = ∑

ν

ε
†
qνMεqνh̄ = i h̄ ∑

ν
∑
κ

[
(ε∗qνκ)

y(εqνκ)
x − (ε∗qνκ)

x(εqνκ)
y
]
= 0 . (8.24)

Furthermore, there cannot be phonon PAM in systems with no spin-phonon interac-

tion. In such systems, we completely describe the trivial phonon system by solving

the dynamical matrix equation D̂(q)εqν = ω2
qνεqν. In such a system, the eigenvalues

and eigenvectors satisfy ω−qν = ωqν and ε−qν = εqν respectively. Noting MT = −M,

one can show ℓs
−qν = −ℓs

qν, and using the fact the n−qν = nqν we find Jz ≡ 0. In sys-

tems with spin-phonon interaction, the dynamical matrix equation will be of the form

[(−iω + A)2 + D]ε = 0, and TRS will be explicitly broken, allowing Jz 6= 0.

In practice, stating that phonons can have PAM does not inherently bridge these

theoretical predictions with an experimentally accessible phenomenon. To determine

how these chiral phonons manifest themselves in the lattice, we perform a basis trans-

formation on the atomic displacements ε as follows. Let the new basis be:

|R1〉 ,
1√
2
(1 i 0 · · · 0)T |L1〉 ,

1√
2
(1 − i 0 · · · 0)T

|Rn〉 ,
1√
2
(0 · · · 0 1 i)T |Ln〉 ,

1√
2
(0 · · · 0 1 − i)T . (8.25)

We can define the coefficients of the basis transformation εRα = 〈Rα|ε〉 = (xα− iyα)/
√

2

and εLα = 〈Lα|ε〉 = (xα + iyα)/
√

2 s. t. 6 ε = ∑α εRα |Rα〉+ εLα |Lα〉. We note that we can
6We note that this basis transformation is unitary and as such maintains the completeness and closure
relations of the eigendisplacements.
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define the phonon circular polarization operator

Ŝ
ph
z , ∑

α

(
|Rα〉〈Rα| − |Lα〉〈Lα|

)
=




0 −i

i 0


⊗ 1n×n (8.26)

which is identically equal to the Mmatrix from before. We can therefore compute the

phonon polarisation s
ph
z as:

s
ph
z = ∑

α

(
|εRα |2 − |εLα |2

)
h̄ = ε

†Ŝzεh̄ = ε
†Mεh̄ , ℓ

s
z . (8.27)

This shows that phonon circular polarisation and phonon spin angular momenta are

entirely equivalent in this formalism, namely that phonons with nonzero PAM must

inherently induce circular atomic orbits, see Figure 8.2. By characterizing those modes

with nonzero PAM, we can then exactly determine the corresponding real space motion

of the atoms in the 2D material.
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FIGURE 8.2: Chiral phonon in 1L-MX2 materials. (a) The TA chiral phonon at the K-point (ℓph = −1). The transition metal precesses in a circular
orbit about its average position in thermal equilibrium, while the chalcogen atoms are static. (b) The TO2 chiral phonon at the K-point (ℓph = +1).
The chalcogens orbit clockwise and the transition metal remains static for the. Inset on the top right of each panel is the phase correlation of
the atomic motions. (c) Phonon normal mode dispersion of chiral (acoustic and E’ optical) phonon branches in 1L- MX2 materials. The relative
strength of the one-phonon structure factor for these modes is given by the coloration for the acoustic and optical branches respectively. Note that
these modes are the brightest in the proposed UEDS experiment, and are responsible for (non)chiral charge carrrier scattering. The Z-polarized
modes are not visible in the geometry proposed and the single phonon structure factor of the E′′optical modes are much smaller than for the E’
modes shown. The chirality at K of the TA and TO2 modes are labelled, with the chiralities flipping sign at K′ owing to the TRS. Reprinted with
permission from Ref [174]. Copyright 2023 American Physical Society.
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8.5 GENERATION OF CHIRAL PHONONS

By using ultrashort pulses of circularly polarized light, spin-conserving interband elec-

tronic transitions can be driven that impulsively photodope carriers into either the K

(σ+) or K′ (σ−) valley of monolayer TMDs. This nonequilibrium distribution of valley-

polarized carriers will depolarize as the carrier distribution thermalizes to the band

edges through allowed momentum and energy relaxation channels.

Equation (8.12) shows that linearly-polarized photoexcitation (polarization state
(
|L〉+ |R〉

)
/
√

2) induces interband electronic transitions at the band edges with equal

amplitude at TRS related K and K′ valleys. The subsequent relaxation of the (hot)

charge carriers back to the band edges occurs through interactions with phonons and

is determined by the magnitude of the EPC matrix elements |gν
mn(k, q)|2, where m, n (ν)

index electronic bands (phonon dispersion modes) at electronic (phononic) momentum

k (q). This coupling may be screened by ambient conditions, such as the dielectric

environment to which 2D materials are more susceptible, leading to a renormalization of

the EPC strength.

Only the ultrafast lattice and charge carrier dynamics following linearly-polarized

above band-gap photoexcitation have been previously studied, either with ab initiometh-

ods [52] or ultrafast electron diffuse scattering techniques in 1L-MoS2 [84]. Here, the ultra-

fast relaxation results in a phonon population distribution that is profoundly anisotropic

in momentum, but has no momentum-valley polarization. Circularly polarized light and

the associated (initial) valley polarized carrier distribtuion change the resulting dynamics

profoundly compared to linear polarized excitation. Intervalley momentum and energy

relaxation of electrons in the conduction band at K (or K′) can only occur via scattering

with a chiral phonon of momentum K′ (or K) that connects the K-valleys (Figure 8.1b).

Intervalley momentum and energy relaxation of holes in the valence band at K (or K′) can

only occur via scattering with non-chiral phonons of momentum K (or K′) that connects
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ν Label D3h ωa
K sz

Mo sz
S ℓs

Mo
b ℓs

S
b ℓb

ph Mc
s

1 ZA A2 21.791 0 −0.325 0 −1 1 −1
2 TA 22.096 0.552 0 1 0 −1 1
3 LA 28.219 −0.301 0.348 −1 1 0 1
4 TO1 E′′ 40.959 0 0 0 0 0 −1
5 LO1 E′′ 40.064 0 0.500 0 1 0 1
6 TO2 E′ 40.664 0 −0.500 0 −1 1 1
7 LO2 E′ 46.458 −0.206 0.397 −1 1 0 1
8 ZO2 A1 48.886 0.083 0 1 0 −1 1
9 ZO1 A2′′ 45.803 0 −0.412 0 −1 1 −1

ain units of meV
bin units of h̄
cmirror symmetry is with respect to the x− y plane

TABLE 8.3: Chirality of phonons in 1L-MoS2. The symmetries of each oscillation are given by the label
and C3h point group representation where applicable. Circular polarizations and spin pseudo-angular
momentum of Mo (S) are given by sz

Mo (sz
S) and ℓs

Mo (ℓs
S) respectively. Phonon angular momentum is given

by ℓph and the parity of the mirror symmetry of each mode is given by Ms.

the K (or K′) and Γ valleys (Figure 8.1b). Thus, on the picosecond timescale associated

with rapid EPCprocesses, a profoundlymomentum-valley polarized phonon distribution

is expected. Namely, chiral phonons are expected in the K valley opposite to the initially

prepared valley, while non-chiral phonons are expected in the K valley into which carriers

were pumped. It is worth noting that in W-based monolayer TMDs, the hole relaxation

channel is not present due to the large Γ - K valley energy splitting in the valence band,

resulting in a “pure” momentum-valley polarized chiral phonon distribution.

8.6 VALLEY-SELECTIVE DIFFUSE DYNAMICS

As a prototypical spin- and valleytronic 2D hexagonal material, here we examine UEDS as

a probe of chiral phonons in 1L-MoS2 through the lenses of the ab-initio scattering theory

developed thusfar. Standard density functional perturbation theory (DFPT) allows for

computation of the atomic polarization vectors for each phonon mode, computed using

the code suites of QuantumESPRESSO[185, 186]. We can compute the phonon PAM of each

mode by the sum of orbital and spin components for each sublattice that is oscillating
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for the valley phonons. Doing so, we obtain the chart in Table 8.3.

The modes with nonzero PAMmust jointly satisfy {ν|ℓph 6= 0∪Ms ≡ 1}, where even

parity of the in-plane mirror symmetry is needed to not get cancelling contributions

to the PAM from different locations in the supercell. This allows for the identification

of three chiral modes in this system. For chirality +1 (in units of h̄), there is only the

transverse optical mode of E
′ symmetry (TO2), corresponding to the sulfur sublattice

oscillating clockwise. For chirality −1 , we identify both the transverse acoustic (TA)

mode and Z-polarised optical mode of A1 symmetry (ZO2). Both these modes involve

the oscillation of the moldybdenum sublattice in an anticlockwise direction, but the ZO2

mode has a much lower degree of polarization (by an order of magnitude) and will not

be as readily excited in the generation schemes proposed here.

For the case of monolayer TMDs, the phonon scattering selection rules mean that

F1ν for the out-of-plane (Z-polarized) modes and the optical modes of E′′ symmetry

are very weak in the geometry of these experiments (along the [001] direction). These

experiments primarily probe the q-dependent population dynamics of the E′ optical and

LA/TA modes, which are exactly the modes that are characterized by ℓph 6= 0.

Note 8.2!
In the first Born approximation, namely that single phonon scattering dominates

the diffuse intensity, we compute the scattering intensities for phonons of chirality

±1 within the Laval-Born-James theory [65, 66, 67] using modified versions of the

codes in the EPW/ZG suite of QuantumESPRESSO. Band-structure calculations used

fully-relativistic norm-conserving Troullier-Martins pseudopotentials [187] and the

Perdew-Burke-Ernzerhof (PBE) GGA for the exchange-correlation functional [188].

We employed a planewave energy cutoff of 120Ry, and a 20× 20× 1Monkhorst-

Pack k-grid for the monolayer, and 20× 20× 20 for the bulk. In order to avoid

spurious interactions among periodic replicas of the monolayers in the out-of-
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plane direction, an interlayer vacuum spacing of 18Å and truncated coulomb

interaction were employed [189]. For all calculations, we used the primitive cell

of MoS2, with relaxed lattice parameter of 3.16Å. Second-order interatomic force

constants were computed using DFPT on an 8× 8× 1 q-grid for 1L-MoS2, and a

4× 4× 4 q-grid for bulk MoS2 and Fourier interpolated onto a 256× 256× 1 q-

grid to compute phonon normal mode dispersions and thus the diffuse scattering

patterns.

In this work, we make no attempt to perform a full simulation of the nonequilib-

rium chiral carrier-phonon interactions that following circularly polarized excitation

in 1L-MoS2. Instead, we present a simplified, but qualitatively accurate model for the

nonequilibrium phonon populations that result transiently from valley depolarization

driven by inelastic chiral carrier-phonon scattering in order to determine the observable

impact onUEDSpatterns. Tomodel the effect of themomentum-valley polarizedphonon

occupations following carrier valley depolarization, we take the nonchiral modes to be

occupied according to the BE distribution at room temperature and the chiral modes

involved in valley depolarization at an elevated “effective temperature” of 380K within

a Gaussian window of full-width half-max (FWHM) 0.1 reduced lattice units7 around K

(K′). The qualitative features in the diffuse scattering pattern are not sensitive to the

precise values of these temperatures. Using the framework described above, we compute

UEDS patterns under the nonthermal occupation of phonons.

The signature of chiral phonon emission is the relative diffuse intensities at the K (K′)

valleys. We can define the phonon momentum-valley anisotropy as:

η(τ) ,
I1(q = K′, τ)− I1(q = K, τ)

I1(q = K′, τ) + I1(q = K, τ)
. (8.28)

7This value is the average FWHM of the sz distribution for the respective orbiting sublattices of the chiral
modes. The results herein do not depend sensitively on the exact value chosen.
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FIGURE 8.3: The diffuse scattering intensity dichroism induced by charge carrier depolarization following
circularly-polarized photoexcitation, taken as I+ − I−. A selection of BZs are outlined, with the dots
representing the Γ points, emphasizing the locality of the features around the K valleys. Reprinted with
permission from Ref [174]. Copyright 2023 American Physical Society.

For initial carrier polarization at K, pump-probe delay times where η > 0 are indicative of

dynamics dominated by a K′ chiral phonon assisted conduction electron K-K′ scattering,

as opposed to η < 0 where nonchiral assisted valence hole K-Γ scattering is dominant.

The differential diffuse scattering intensity predicted for photoexcitation of handedness

σ+ (thus ℓph = −1, the TAmodewith occupancy centered atK′) minus σ− (thus ℓph = +1,

the TO2 mode with occupancy centered at K) is shown in Figure 8.3. The differential

pattern shows clear features at the K points associated with nonequilibrium populations

of chiral phonons that should be measurable in circularly polarized pump-probe experi-
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ments. The time-constants associated with the red (K′) and blue (K) intensity features

in Figure 8.3 provides a measure of the strength of chiral carrier-phonon coupling to

the TA and TO2 chiral modes respectively. Further, the intensity contrast visible in Fig-

ure 8.3 is reduced (or disappears entirely) if carrier valley-depolarization occurs bymeans

unrelated to inelastic phonon scattering on a timescale shorter than that associated

with EPC, e.g. via the exchange interaction. Thus, these observable features in the

differential phonon-diffuse intensity provide a sensitive test of phonon-assisted valley

depolarization in monolayer TMDs, allowing for the identification of regimes in time

and values of n0 where chiral phonon emission, electron-hole exchange, or carrier-carrier

scattering become dominant with regards to the charge carrier depolarization. The

profound impact of the nonequilibriummomentum-valley polarized chiral phonon popu-

lations on diffuse scattering contrast in K and K′ regions that emerges transiently during

valley-depolarization of the carrier system due to EPC (Figure 8.3) can be contrasted with

the expected differences in phonon diffuse scattering between monolayer and bulk sam-

ples at thermal equilibrium. Chiral phonons manifest in monolayer TMDs, with distinct

phonon-diffuse signatures in momentum space, even at thermal equilibrium. However,

the momentum anisotropy due to chiral phonons is not evident in the differential diffuse

scattering intensity comparing bulk and monolayer MoS2 at thermal equilibrium shown

in Figure 8.4. There are intensity contrasts visible in this difference pattern, but none

at momentum positions associated with the K-point chiral modes, thus necessitating

nonequilibrium measurements to observe chiral phonon emission.

While we did not compute fully the TDBE for this system, taking into account the

angular momentum conservation, it has recently been performed by collaborators [190],

where the theoretical predictions of this work have been exactly validated.
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FIGURE 8.4: Relative percent difference of bulk diffuse scattering versus monolayer scattering (I1
bulk −

I1
ml)/I1

bulk. There is clear structure across the image showing significant changes in diffuse scattering
between multi-layer and monolayer, but there are no features around the K valleys, indicating that the
observation of chiral phonons cannot be done in an equilibrium measurement. Reprinted with permission
from Ref [174]. Copyright 2023 American Physical Society.

8.7 OUTLOOK

The properties of monolayer hexagonal lattices have been shown to yield chiral electron-

phonon interactions that can be a key feature of carrier valley depolarization processes

following photoexcitation with circularly polarized light. The allowed momentum and

energy relaxation processes involved populate valley-polarized, nonequilibrium distri-

butions of chiral phonons whose circular atomic oribts and angular momentum are

required to conserve total angular momentum of the coupled electron-lattice system dur-
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ing valley depolarization. Further, these chiral carrier-phonons interactions are uniquely

hallmarked by increases in chiral phonon occupancy at either K or K′ points in the BZ.

As a state-of-the-art technique for the direct measurement of nonequilibrium phonon

occupancy with full momentum resolution, UEDS can directly identify the resulting

valley polarized chiral phonon distributions in a pump-probe experiment. Further, the

technique will also be able to distinguish between chiral and non-chiral dominated

scattering regimes occurring on the picosecond timescale provided data of sufficient

signal-to-noise ratio and sample quality.





Part IV

POLARONIC MATERIALS





9
To the harmonic approximation and beyond

“Theory and practice sometimes clash.
And when that happens, theory loses.

Every single time.”
—Linus Torvalds

Tin selenide (SnSe) is a unique material in that it pretty completely violates the typical

assumptions of condensed-matter analysis, namely that the material is “harmonic”. Here,

harmonic refers to the notion that pair-wise interactions between atoms, and the result-

ing forces between them, are sufficient to describe the equilibrium vibronic state of the

lattice. This assumptions crops up in many places, including crucially the calculation of

phonon dispersion in typical DFT codes (for example Eq. (5.2)). A layered material, SnSe

is what is known as a thermoelectric, with an outstandingly high figure-of-merit (FOM)

zT [191, 192, 193]. This class of materials is extremely desirable for applications where

heat sources are abundant, while sources of electricities are not (namely, Mars), for the

recuperation of energy lost to heat (internal combustion engines, power processing

plants, etc), and others. The very nature of this class of materials is complicated to

understand, as it relies on a highly convoluted interaction between the electronic system

of the material and its lattice, in ways not yet entirely understood, especially with respect

to EPC. This combination of attractive industrial applications and low-level scientific

137
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FIGURE 9.1: zT of SnSe versus temperature, data taken from [191]. (a) The thermoelectric FOM zT across
the phase transition from the Pnma to the Cmcm phase, where the FOM increasing massively for the
reasons outlined in the main text. (b) The lattice thermal conductivity, showing the needed decrease to
afford such a large increase in zT. (c) The Seebeck coefficient S, which reflects the increase in carrier
mobility in the Cmcm phase. (d) The specific electrical conductivity, which increases in the Cmcm phase by
almost ×5 compared to the Pnma phase. The unit cells have been rendered using the VESTA visualization
software.

intrigue has spawned much research on this material in recent years.

Definition 9 (Thermoelectric effect). Process through which a temperature gradient

induces an electric potential inside a material or an electric current produces a tempera-

ture gradient. This can be compartmentalized into the Seebeck effect [194] (creating a

voltage drop from a temperature gradient), the Peltier effect [195] (creating a heat flux

from electric current), and the Thompson effect [196] (heating or cooling in the presence

of both an electric current and temperature gradient).
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The FOM for these materials will depend on a few material properties that we address in

turn.

◮ THE SEEBECK COEFFICIENT

Known as the thermopower of a material, the Seebeck coefficient S = −∆V/∆T is a

simple measure of the amount of electric potential induced (∆V) for a given gradient in

temperature ∆T, and therefore has units µV/K. A nice physical picture of S comes by a

re-arrangement of the units:
V

K
=

J

K− e
=

[S]

[Q]
(9.1)

where the new interpretation is that the Seebeck coefficient gives the entropy per unit

charge carried by the moving charge carriers in the material (negative for electrons,

positive for holes). It is clear that any thermoelectric FOM should be at least linearly

proportional to this coefficient: if the material has no induced potential drop for an

applied thermal gradient, then by definition it is not a thermoelectric!

◮ SPECIFIC ELECTRICAL CONDUCTIVITY

The intrinsic measure of a materials ability to resist electric current, the specific electrical

conductivity σ relates the ability of electrons in thematerial to freelymove, to the effective

resistance to current the material provides. In metals, because many of the electrons

reside in energy near the Fermi level, the electrical conductivity will be high. Again, it is

clear that the thermoelectric FOM should be related to this: if a material cannot move

charges freely, then even for high S, it will be impossible to realize a practical device using

this material as a thermoelectric, since the total electric power it provides would be low.

◮ THERMAL CONDUCTIVITY

A direct measure of the materials ability to propagate heat, the thermal conductivity κ

implies that materials with extremely rigid atomic bonds would propagate heat less easily



140 TO THE HARMONIC APPROXIMATION AND BEYOND

than other materials. The rate of heat transport is directly related to the magnitude of κ,

necessitating its inclusion in the thermoelectric FOM.

We can now combine all these ingredients into the FOM [197]:

zT =
σS2T

κ
(9.2)

where the FOM is by convention defined for a temperature T, which should be interpreted

as “for the given thermal energy at temperature T, how well does this material induce

the thermoelectric effect?”.

A materials engineer might see this figure of merit and be excited by the prospect

that there are clear components that can serve as “tuning knobs”, fine tuning the FOM

one degree of freedom at a time. Unfortunately, owing to EPC and other effects, the

ingredients in zT are all intertwined, and cannot be easily separated. For example,

the total effective thermal conductivity in a material is given as a sum of the electron

contribution and the phonon contribution κ = κe + κph, where the Widermann-Franz

law shows:

κe =
π2

3

(
kB

e

)2

σT = σLT (9.3)

where L ≃ 2.44× 10−8 V2K−2 is the Lorenz number, suggesting that increasing σ yields

increasing κe, dropping zT. The electron (phonon) component will dominate in metals

(semiconductors), so thematerial of interest should keep the ratio κph/κe low, minimizing

κph and maximizing σ, implying a highly doped semiconductor. It is for this very reason

that the good thermoelectric materials should satisfy the following:

• Phonons, which directly control κ, must scatter as much as possible, like in a glass,

thus lowering κ

• Electrons, which directly control σ, must scatter as little as possible, like in a crystal,

thus maintaining σ
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FIGURE 9.2: Atomic configurations of SnSe, with the Pnma configuration of SnSe, for example at room
temperature, on the left and the Cmcm configuration of SnSe, for example at high temperatures, on the
right.

The combination of these effects leads to the sobriquet phonon-glass electron-crystal for

thermoelectrics. How does one achieve this phonon-glass electron-crystal condition in

a material? Material scientists have historically used the following tactics:

◮ ALLOYS can induce spatial variation in the composition density of a material, introduce

site vacancies, or dope materials with atoms that have large vibrational amplitudes s. t.

phonons will scatter often [198].

◮ COMPLEX CRYSTALS take inspiration from superconductors, where distortions are con-

tained by the phonon glass that does not interupt the electron crystal [199]

◮ NANOSTRUCTURES utilizes the direct manipulation of the crystal configuration on the

nanoscale such as to induces atomic configurations that direclty result in low κ, but leave

the intrinsic electronic conductivity untouched, either through laser ablation techniques,

3D printing, etc [200].
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FIGURE 9.3: Electronic band structures of SnSe in the Pnma and Cmcm phases. In the Pnma phase, SnSe
is an indirect band semiconductor of bandgap 51.9meV, where the conduction band minimum at 2

3 Y. In
Cmcm, it is direct bandgap at 15.6meV with the conduction band minimum now at Γ.

9.1 ELECTRONIC PROPERTIES

SnSe in both phases has a complicated electronic band structure, consisting of mostly

Se-4p orbitals in the valence band and Sn-5p orbitals in the conduction band [201, 202].

Indirect in the Pnma phase, and direct in the Cmcm phase, this p-type semiconductor

has its electronic band structures shown in Figure 9.3.
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9.1.1 Crystallographic properties

The mission is clear: to understand why SnSe has such a good zT at room temperature

equates to understanding why it has such a low κ. The room temperature phase is

the orthorhombic phase (Hermann-Maugin spacegroup Pnma, Schönflies symbol D16
2h,

corresponding to a zigzag-armchair configuration within each layer), where the room

temperature κ ≃ 1Wm−1K−1 in the plane of the layer is particular low. As with the

monolayer TMDs, the 2D nature of an individual layer of SnSe confines charge carriers

and provides additional phonon scattering channels [200].

Going to high temperatures, at around T ∼800K, there is a structural phase transi-

tion that straightens the zigzag and armchair directions of the layers (Hermann-Maugin

spacegroup Cmcm, Schönflies symbol D17
2h) that not only reduces the bandgap of the

material (putting more electrons close to the Fermi level), but increases the carrier mobil-

ity [191], both increasing σ and thus zT. The conventional 8-atom unit cells for both of

these phases are rendered in Figure 9.2, and the atomic positions (in terms of the lattice

vectors) are:

(
Se1 Se2 Se3 Se4 Sn1 Sn2 Sn3 Sn4

)
=

(
a b c

)

×








0.14 0.36 0.64 0.86 0.12 0.38 0.62 0.88

3/4 1/4 3/4 1/4 1/4 3/4 1/4 3/4

0.52 0.02 0.98 0.48 0.09 0.59 0.41 0.91




Pnma




0.14 0.36 0.64 0.86 0.12 0.38 0.62 0.88

1/2 0.00 0.00 1/2 0.00 1/2 1/2 0.00

3/4 1/4 3/4 1/4 1/4 3/4 1/4 3/4




Cmcm

(9.4)

The relaxed lattice parameters for the Pnma phase are a =11.55Å, b =4.172Å, and
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c =4.483Å, with a being the stacking direction. For the Cmcm phase in the conventional

unit cell, the lattice parameters are a =11.76Å, b =4.26Å, and c =4.24Å.

9.2 PREVIOUS RESEARCH TO DATE

Experimental studies have often probed individual aspects of the material, such as ex-

ploring the anharmonic dampening of the low energymodes [203], by disecting the polar

phonon modes via their polaronic signatures in angle-resolved photoemission spec-

troscopy (ARPES) spectra [204], which independently do not provide a complete picture.

To tackle this, studies have relied on ultrafast x-ray or electron (in)elastic scattering to

unravel the interplay between the electronic system and the (potentially anharmonic)

lattice, as such approaches can even be sensitive to spin- and valley-tronic effects like

chiral phonons in 2D materials [174].

Unfortunately, these scattering experiments to date have offered competing inter-

pretations of the resulting behaviour. Following photoexcitation, ultrafast elastic x-ray

scattering have posited that the material prefers a metastable atomic configuration

commensurate with the orthorhombic distortion of the rocksalt Immm structure [205],

which they determined by computing the atomic mean-squared displacements via the

elastic Bragg peak transient intensity. However, other work used momentum-resolved

UEDS, which failed to show such behaviour in the elastic scattering, as well as offered

unique features in the resulting phonon occupancy following photoexcitation [118]. This

momentum-resolved data showed extreme anisotropy in the resulting dynamics for

scattering vectors Q parallel or perpendicular to the c crystal axis, which cannot be

explained by a simple deformation of the lattice into the proposed metastable Immm

phase. The unusual anisotropy in the data was interpreted as evidence of polaron for-

mation. This interpretation was supported by a simple point defect model for polaron

diffuse scattering that showed excellent agreement with the momentum-dependence of
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the diffuse scattering for a-priori reasonable polaron sizes. The extremely polar lattice of

SnSe seemed to provide further qualitative support (Born effective charges of -3.8 on Se

and +3.8 on Sn).

In the following chapters, we first explore from first-principles the properties of po-

larons and their diffuse scattering signatures. After validating the approach in a verified

polaronic material, we proceed to determine the properties of polarons in SnSe, at a

level of detail far beyond the point defect model, in the room temperature phase. We

continue by disecting the behaviour of the EPC in SnSe, then quantifying the anhar-

monicity of the lattice, thus determining how such strong anharmonic effects are made

manifest in scattering experiments. This work aims to offer a fresh interpretation of

previous ultrafast scattering data in light of our new findings. Namely, neither electron

nor hole polarons are found to exist in the room temperature phase of SnSe, and that

the momentum anisotropy found in these experiments matches identically to behaviours

in the EPC of the material and anharmonic phonon lifetimes.
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Polaron-Diffuse Scattering

The first successful ab-initio theory of polarons was the Landau-Pekar model [206, 207],

where the underlying assumption was that the electron wave function extends over many

unit cells, allowing for the neglect of any details of the lattice in order to use continuum

electrostatics. By adding a single electron to system with wavefunction ψ extending

spatially over many unit cells, we can readily identify the change in system energy from

simple sums of kinetic and potential energies associated with the new wavefunction

[208]:

ELP =
h̄2

2m∗

∫
dr|∇ψ|2

︸ ︷︷ ︸
band energy of extra e−

+
1

2

∫
dr E ·D

︸ ︷︷ ︸
electrostatic energy of dielectric

. (10.1)

The displacement field will be related to the density of free carriers (ergo to the wave-

function) via Gauss’s law:

∇ ·D = −e|ψ(r)|2 ⇔ D =
e

4π
∇
∫

dr′
|ψ(r)′|2
|r− r′|

D=ǫ0ǫ0E
=⇒ 1

2

∫
dr E ·D =

1

2

e2

4πǫ0

1

ǫ0

∫
drdr′

|ψ(r)|2|ψ(r′)|2
|r− r′| . (10.2)

Yet, since the electronic contribution to the dielectric screening is already accounted for

by the band structure in the first term of Eq. (10.1), we subtract the portion corresponding

to ionic screening turned off (ǫ0 → ǫ∞, the high-frequency permittivity). Defining the
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reicprocal effective permittivity 1/κ = 1/ǫ∞ − 1/ǫ0, we now find a complete expression

for the ground-state energy of the LP polaron:

E′LP[ψ] =
h̄2

2m∗

∫
dr|∇ψ(r)|2 − 1

2

e2

4πǫ0

1

κ

∫
dr dr′

|ψ(r)|2|ψ(r′)|2
|r− r′| −̟

( ∫
dr|ψ(r)|2 − 1

)

︸ ︷︷ ︸
Lagrange multiplier ̟

(10.3)

where we have added a Lagrange multiplier ̟ to enforce the constraint that the result-

ing new wavefunction should still be normalised
∫

dr|ψ(r)|2 = 1. Taking functional

derivatives with respect to ̟ and ψ∗ yield Schrödinger problem for the wavefunction:

δE′LP

δ̟
:
∫

dr|ψ(r)|2 = 1 (10.4a)

δE′LP

δψ∗
: − h̄2

2m∗
∇2ψ(r)− e2

4πǫ0

1

κ

∫
dr′
|ψ(r′)|2
|r− r′| ψ(r) = ̟ψ(r) . (10.4b)

Projection onto ψ∗ then yields the energy of the LP polaron:

ELP[ψ] = ̟ +
1

2

e2

4πǫ

1

κ

∫
drdr′

|ψ(r)|2|ψ(r′)|2
|r− r′| (10.5)

It can be shown ground state energy (min ELP[ψ]) is physical only for 1/κ > 0⇔ ǫ0 > ǫ∞

i.e. polar crystals (ruling out all polarons in non-polar semiconductors) [209, 210]. Further,

since EPC has contributions from short- and long-range lattice distortions and is there-

fore related to the ionic dielectric constribution [211], this model rules out (piezo)acoustic

polarons. What’s more, it assumes isotropic dielectric behaviour throughout the crystal

(making polarons in layered materials not possible for instance), as well as ignoring all

knowledge of the nature of the lattice. Unfortunately, this model is essentially never valid

since it assumes large polarons to therefore use continuum electrostatics, but is valid

mainly for strong coupling and therefore small polarons [212]. To combat this limitation

and create a theoretical view of polarons that further allowed for polarons in nonpolar

crystals, as well as acoustic polarons, Sio et al began from density functional theory

(DFT) to include EPC from the premise [213].
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10.1 A DFT APPROACH TO POLARONS

Denoting the equilibrium electronic wavefunctions ψ0
νk with atoms at equilibrium posi-

tions plus displacements, τ = τ
0 + ∆τ, we expand the DFT energy in terms of second-

order force constants C0
καp,κ′α′p′ , nonequilibrium atomic displacements for a single elec-

tron (hole) in the conduction (valence) band with wavefunction ψ and change in charge

density ∆n = |ψ|2 up to O(∆τ
3) +O(∆n2):

EDFT[{ψνk}, {τκα}] = EDFT[{ψ0
νk}, {τ0

κα}] +
1

2 ∑
καp

κ′α′ p

C0
καp,κ′α′p′∆τκαp∆τκ′α′p′ +O(∆τ

3)

+ EHa
∫

drψ∗(r)ĤKS[n(r), {τκp}]ψ(r)

+

✘
✘

✘
✘

✘
✘
✘

✘
✘
✘
✘

✘
✘

✘
✘
✘

✘
✘
✘

✘✘✿
O(∆n2)

1

2
EHa

[ ∫
drdr′

1

EHa

δ2Exc

(δn↑)2
∆n(r)∆n(r′)

+
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✘
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✘
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✘
✘
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✘
✘
✘
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✘

✘
✘
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✘
✘

✘
✘

✘
✘
✘

✘✘✿
O(∆n2)

∑
T

∫
drdr′

[∆n(r)− 1/NpΩ][∆n(r′)− 1/NpΩ]

|r− r′ − T|/a0

]
. (10.6)

After expanding the KS Hamiltonian into a perturbation picture with respect to the

atomic displacements, namely ĤKS[n(r), {τκp}] = ĤKS[n0(r), {τ0
κp}] + ∑καp

∂VKS
0

∂τκαp
∆τκαp +

O(∆τ2), we find now our polaron energy functional:

EP[ψ, {∆τκαp}] = EP[ψ
0, {∆τ

0
κp}] +

1

2 ∑
καp

κ′α′ p

C0
καp,κ′α′p′∆τκαp∆τκ′α′p′

+
∫

drψ∗(r)
[
ĤKS

0 + ∑
καp

∂VKS
0

∂τκαp
∆τκαp

]
ψ(r) (10.7)

Again adding Lagrange multipliers (same procedure as before), minimising functional

derivatives with respect to ∆τκαp and ψ∗ yield coupled system

ĤKS
0 ψ(r)−

∫
dr′G(r, r′)|ψ(r′)|2ψ(r) = ̟ψ(r) (10.8a)
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∆τκαp = − ∑
κ′α′p′

(C0)−1
καp,κ′α′p′

∫
dr

∂VKS
0

∂τκ′α′p′
|ψ(r)|2 (10.8b)

where we have now identified the Green’s function of the polaron response:

G(r, r′) = ∑
καp

∑
κ′α′p′

∂VKS
0 (r)

∂τκαp
(C0)−1

καp,κ′α′p′
∂VKS

0 (r′)
∂τκ′α′p′

(10.9)

This is the core idea. We can write all desired quantities in the basis of KS states and

phonon normal modes! For example,recasting Eqs. (3.9a) and (3.14) into the following

forms:

gν
mn(k, q) = ∑

καp

(
h̄

2Mκωqν

)1/2

(eqνκ)
αeiq·Rp

∫
drψ∗mk+q

∂VKS
0

∂τκ′α′p′
ψnk(r) (10.10a)

(C0)−1
καp,κ′α′p′ =

1

Np
∑
qν

(eqνκ)α(e∗qνκ′)
α′

√
Mκ Mκ′ω2

qν

e
iq·(Rp−Rp′ ) (10.10b)

we can describe the polaron by its momentum-resolved contributions from both elec-

tronic and phononic systems:

2

Np
∑

qmν

Bqν (gν
mn(k, q))∗ Amk+q = (εnk −̟)Ank

1

Np
∑

mnk

A∗mk+q

gν
mn(k, q)

h̄ωqν
Ank = Bqν (10.11)

Practically, these equations are solved by instantiating the electronic weights with

Gaussian-distributed values about the valence band maximum (conduction band mini-

mum) for the hole (electron) polaron with a full-max half-width matching reasonable

a priori sizes for the polaron. The solution is solved self-consistently and is said to be

converged when the maximum difference in atomic displacements across the supercell

between successive iterations is below a set tolerance (maxpk ℜ{∆τn+1
pk − ∆τn

pk} < δτ).

Further, the starting location in the BZ is iterated to ensure global convergence. The

full workflow is given in Figure 10.1. Remarkably, we can rewrite all desired quantities in
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Compute gν
mn(k, q) on dense grid

First iteration?

NoYes

Compute Bqν

Compute Hnk,n′k′

Solve for Ank

Initialise Ank with Gaussian centered at CBM

maxpk ℜ{∆τn+1
pk − ∆τn

pk} < δτ?

YesDone!

No

Take lowest energy Ank

FIGURE 10.1: Workflow for the practical calculation of the numerical solution to the self-consistent polaron
equations in Eq. (10.11). After initialising electronic weights at the momentum closest to the manifold
extrema (valence bandmaximum for the hole polaron, conduction bandminimum for the electron polaron),
the equations are evaluated iteratively to determine eigenenergies ̟ and eigenstates Ank. Should the
iterative change in formation energy be above a set tolerance, the lowest energy eigenstate is used to
initialize the solution to the self-consistent equations. Iteration occurs until changes in formation energy
are below a tolerance.

terms of electron and phonon contributions, Ank and Bqν respectively

∆τ
pol
καp = − 2

Np
∑
qν

B∗qν

(
h̄

2Mκωqν

)1/2

ε
α
qνκ(q)e

iq·Rp (10.12a)

∆E f = ̟− εCBM +
1

Np
∑
qν

|Bqν|2h̄ωqν (10.12b)

where ∆τ
pol
καp are the atomic displacements of the atoms in the supercell caused by the

presence (absence) of charge wavefunction density in the system, and ∆E f the formation

energy of the polaron in terms of the conduction band minimum (CBM) energy for

the electron polaron (the valence band maximum energy for the hole polaron) and

the polaron eigenvalue ̟. Due to the periodic boundary conditions of the supercell

simulation, in this case the formation energy is expected to decay as 1/L. Therefore,

determining the linear regression of 1
NkV1/3

versus the formation energy and extrapolating
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to 1/L→ 0 =⇒ L→ ∞ yields the reported formation energies [214], a process known

as Makov-Payne extrapolation [215].

In so much as the polaron vibrational weights Bqν correspond to a real-space atomic

displacements as in Eq. (10.12a), we can analagously determine the real-space polaron

wavefunction in terms of the electronic weights Ank as:

Ψpol(r) =
1

Np
∑
mp

∑
nk

eik·RpU†
mnk Ankwm(r− Rp) (10.13)

where wm(r) is aWannier function in the unit cell (normalized in the supercell), andU†
mnk

is the unitary matrix ensuring a smooth Bloch gauge in the Wannerization process.

10.2 DIFFUSE-SCATTERING SIGNATURES OF POLARONS

From a theoretical point of view, one could use the phononic amplitudes of the polaron

Bqν as simple weights of the phonon strengths in the diffuse scattering pattern, for

example in Eq. (5.10) taking:

nqν →
Bqνnqν

∑ν′
∫

BZ
dq′
ΩBZ

Bq′ν′
(10.14)

which would seem a reasonable approach to compute the diffuse scattering of the po-

laron. Unfortunately, the evaluation of the William-Lax thermal average in Eq. (5.15)

assumes dense partitioning of the BZ (therefore large supercells). In the limit that Bqν

were computed for an “infinite” supercell, this approach would be fruitful. Computation-

ally, however, Bqν must be solved on finite supercells, which would seem to introduce

artifacts in the diffuse scattering pattern with periodicity on the order of the supercell

size.

As we have shown, the intensity of a wave scattered by the atoms in a crystalline

lattice can be expressed within the Laval-Born-James theory [65, 66, 67] as:

I(Q) =

∣∣∣∣∣∑pκ

fκ(Q)eiQ·
[
Rp+τκ+∆τpκ

]
∣∣∣∣∣

2

(10.15)
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At zero temperature and in absence of polarons, the atomic coordinates coincide with

the equilibrium ones (∆τpκ = 0). To account for the influence of a static polaronic

distortion on the diffuse scattering intensity at zero temperature, we identify the nuclear

displacement ∆τpκ in Eq. (10.15) with the structural changes induced by the polaron

formation ∆τ
pol
pκ in Eq. (10.12a), with envelop functions Bqν obtained from the solution

of the self-consistent polaron equations [Eq. (10.11)]. Correspondingly, we express the

changes of scattering intensity as:

Ipol(Q) =

∣∣∣∣∣∑pκ

fκ(Q)e
iQ·
[
Rp+τκ+∆τ

pol
pκ

]∣∣∣∣∣

2

. (10.16)

This definition enables us to promptly integrate polaronic effects in ab-initio simulations

of inelastic scattering experiments.

The extension to finite temperature is conducted via the formalism of the ZGdisplace-

ments in Eq. (5.22), where the ZG displacements of Eq. (5.21) represent the collection of

scatterers in a finite supercell that best approximate thermal diffuse scattering, enabling

us to sample thermal effects with a single atomic configuration. To this aim, we can

distort the lattice according to the ZG displacements, then distort the lattice again by

the polaron to directly view the impact of the defect on the resulting pattern:

IZG+pol(Q; T) =

∣∣∣∣∣∑pκ

fκ(Q)e
iQ·
[
Rp+τκ+∆τ

ZG
pκ +∆τ

pol
pκ

]∣∣∣∣∣

2

(10.17)

In this approach, finite temperature effects of the renormalization of polaron envelop

functions are neglected.

10.2.1 Relation to the polaron envelop function

In the following, we demonstrate that the change of diffuse scattering intensity intro-

duced by the formation of polarons admits a simple representation in terms of the

polaron envelop function Bqν. A direct consequence of this result is that inelastic scat-
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∑qν Sqν|zqν|ℜ{eiq·Rp
εqνκ}

∆τpκ ∝ ∑qν zqν

(
eiq·Rp

εqνκ

)

∑qν B∗qν

(
eiq·Rp

εqνκ

)

ZG

polaron

FIGURE 10.2: Schematic of atomic displacements for nonequilibrium configurations of a finite supercell,
illustrating clearly the nature of the ZG displacements (weighting phonon normal mode coordinates by the
correct combination of signs Sqν to approximate thermal scattering), and of the polaron displacements
(using the polaron vibrational weights Bqν to introduce the needed real-space distortion from the polaron).

tering constitutes a direct route to directly probe polarons in crystals and it should in

principles be capable of providing information on the degree of localization of polaronic

distortions (polaron radius).

To illustrate these points, we focus for simplicity on the low-temperature limit (T = 0)

and we begin by rewriting the scattering intensity in presence of a polaron by a Tailor

expansion of the exponential up to second order:

Ipol(Q) = ∑
pp′κκ′

fκ(Q) f ∗κ′(Q)eiQ[(Rp−Rp′ )+(τκ−τκ′ )]

× [1 + iQ(∆τ
pol
pκ − ∆τ

pol
p′κ′) + [Q · (∆τ

pol
pκ − ∆τ

pol
p′κ′)]

2] . (10.18)

The lowest-order term in the expansion coincides with I0(Q), the contribution of a static

lattice to the scattering intensity in the absence of polarons. It can be easily verified, that

the first-order term in the expansion only contribute to elastic scattering processes, and

it can thus only lead to a renormalization of the Debye-Waller factor. The second-order

term, conversely, is the lowest-order contribution to the diffuse scattering intensity.

As we are primarily interested in diffuse scattering, we omit the first-order term

henceforth, and retain only second-order terms in the following discussion. Correspond-

ingly, the change of diffuse scattering intensity due to the formation of polaron can be



DIFFUSE-SCATTERING SIGNATURES OF POLARONS 155

expressed as:

∆Ipol(Q) ≡ Ipol(Q)− I0(Q)

= ∑
pp′κκ′

fκ(Q) f ∗κ′(Q)eiQ[(Rp−Rp′ )+(τκ−τκ′ )][Q · (∆τ
pol
κp − ∆τ

pol
κ′p′)]

2 . (10.19)

After a few algebraic manipulation, we deduce an explicit expression of ∆Ipol(Q) in terms

of the polaron envelop function:

∆Ipol(Q) = 2h̄ℜ∑
νν′

BqνB∗qν′√
ωqνωqν′

∑
κκ′

fκ(Q) f ∗κ′(Q)eiQ[(τκ−τκ′ )]
(Q · εqν′κ′)(Q · ε∗qνκ)√

Mκ Mκ′
.

(10.20)

This result has been obtained by combining Eqs. (10.11) and (10.19) with the Born-von-

Kármán sum rule (∑p eiqRp = NpδG
q,0), and making use of the conditions B−qν = [Bqν]∗

and ε−qνκ = [εqνκ]∗.

For materials in which polarons are associated with structural distortions along a

single polar phonon – as, e.g., in the case of LiF – this expression simplifies further andwe

can express the change of diffuse scattering intensity induced by the polaron formation

as:

∆Ipol(Q) =
|Bq|2
ωq

F2(Q) (10.21)

where we introduced the function:

F2(Q) = 2h̄

∣∣∣∣∣∑κ

eiQ·τκ
fκ(Q)√

Mκ
(Q · eqκ)

∣∣∣∣∣

2

(10.22)

analogously to the single-phonon structure factor. Overall, Eq. (10.21) indicates the

changes of diffuse scattering intensity induced by the formation of a polaron are directly

proportional to the polaron envelop function. This simple result establishes a direct

link between polaronic distortion in crystals and their fingerprints in diffuse scattering

experiments.

We start bydetermining thediffuse scattering signatures of polarons in a systemwhere

they have been independently verified to exist, and compare those diffuse scattering

signatures to those reported in the alleged polaronic material SnSe. As such, in addition
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to SnSe, we also perform all polaron calculations on the prototypical ionic wide-gap

insulator lithium floride (LiF), which is known to host both electron and hole polarons in

equilbrium [214, 216, 217, 218, 219, 220, 221, 222, 223].

10.3 POLARONS IN LITHIUM FLORIDE

Note 10.1!
The calculations used in this work relied on the computational suite

QuantumESPRESSO [185, 186], using norm-conserving Troullier Martins pseu-

dopotentials [187] and the Perdew-Burke-Ernzerhof generalized gradient

approximation for the exchange-correlation functional [188]. We used an energy

cutoff of 150Ry, and an 12× 12× 12 Monkhorst-Pack k-grid for the electronic

structure calculations. Second order force constants were computed using DFPT

on an 12× 12× 12 q-grid.

The determination of the polaron weights, as well as the EPC calculations and

the polaron diffuse scattering patterns, were computed using developer versions

of the EPW suite [224, 225, 226] using the maximally-localized Wannier functions

computed by wannier90 [227] and the self-consistent polaron equations of Sio et

al [213]. Polar corrections to the MLWF interpolation of the EPC matrix elements

were explicitly implemented to account for short- and long-range interactions [211].

The EPC matrix elements were exactly computed on the origin 12× 12× 12 k- and

q-grids, and interpolated onto the supercell for the calculation of the polaron

weights (largest size of supercell is 24× 24× 24). All diffuse scattering calculations

utilized a developer version of the disca.x and ZG.x codes in the EPW suite [74].

The exact diffuse scattering calculations utilized the same sampling density of the

BZ as their were supercells in the polaron calculation (24× 24× 24), and the ZG

displacements were computed on this same supercell size.
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Energy (eV) Hole Electron

Eigenvalue 4.44 −0.61

Phonon contrib −2.62 −0.49

Electron contrib 0.80 0.37

Formation energy −1.82 −0.12

TABLE 10.1: The associated energies of each polaron determined by Eq. (10.12b) in LiF for a 24× 24× 24
supercell.

We solve the self-consistent Eq. (10.11) and render the sets of weights {Ank} and {Bqν}

in Figure 10.3, and tabulate the formation energies in Table 10.1 for a finite supercell of LiF.

Both such polarons are found to exist with formation energies and real-space extents

matching those reported [213]. Namely, the momentum-resolved weights of the hole

polaron are dispersed throughout the BZ, consistent with a small real-space polaron

with extracted real-space spread of 2rhole
pol = 0.93Å, and usingMakov-Payne extrapolation

[215], we find a formation energy of −1.978 eV. Conversely, the electron polaron has

weights highly localized in the BZ, consistent with a large real-space polaron with an

extracted real-space spread of 2relec
pol = 8.59Å, and an extrapolated formation energy of

−268meV. The visualization of the Makov-Payne extrapolation is shown in Figure 10.4.

The sizes of the polarons are determined via the full-width half-maxima of |Ψpol(r)|2

along a representative dimension of the polaron, in this case the [111] direction as shown

in Figure 10.5, and yield formation energies of −1.978 eV and −268meV for the hole and

electron polarons respectively.

10.3.1 Polaron-Diffuse Scattering in LiF

We thus proceed to determine the expected polaron-diffuse scattering signatures as

measurable by UED and UEDS. Computing the hole-polaron-diffuse scattering pattern

via Eq. (10.17), as in Figure 10.7c and e, shows a small anisotropic change compared to

equilibrium scattering, shown in Figure 10.7b. The low intensity of the differential scat-

tering in Figure 10.7g owes to the small spatial extent of the polaron, and the anisotropy
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FIGURE 10.3: Electronic and vibrational momentum-resolved weights needed for polaron formation according to Eq. (10.11) in the insulator LiF.
The electronic band structure and phonon dispersions are shown. The thickness of the bands at that particular point in the band is directionally
proportional to the magnitude of the weights. The electronic weights, Ank, are given by the yellow coloration on the bands, and the vibrational
weights, Bqν, are given by the dark red coloration on the phonon dispersions. The weights are given for the electron system and phonon system
for the hole polaron in (a) and (b), and for the electron polaron in (c) and (d). For the electronic weights, the bands included in the self-consistent
calculation are those encompassed within the appropriate shaded region (dark blue for valence states in the hole polaron, maroon for conduction
states in the electron polaron). The electronic bands have the band-gap region shaded in orange. Next to each primary axis is the DFT density of
states (purple, arbitrary units) with the polaron spectral weight for the electronic and phononic system (green, meV−1).
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FIGURE 10.4: Makov-Payne extrapolation of polaron formation energies in LiF as a function of inverse
supercell dimension, with the extrapolation to L → ∞ indicated. The hole polaron was calculated on
12× 12× 12, 24× 24× 24, and 32× 32× 32 grids. The electron polaron was calculated on 18× 18× 18,
24× 24× 24, and 32× 32× 32 grids.

with respect to phonon momentum results from the anisotropic p-like orbital character

of the hole polaron atomic displacements and the corresponding wavefunction (see

Figures 10.5 and 10.6) that extend along the diagonal of the projected [111] scattering.

However, the electron polaron (shown in Figure 10.7d and f), extending over many unit

cells, shows a differntial increase in diffuse intensity in a ring about the Bragg peaks

(Figure 10.7h). The point defect model of René de Cotret et al [118] shows that an atomic

displacement field with Gaussian distributed values about some charge trapping cen-

ter (u(r) ∝ e
|r|/r2

pol û) would result in an annular momentum dependence to the diffuse

scattering about a Bragg peak. Namely:

I(∆τ
pol
pκ )− I(∆τpκ = 0)

I(∆τpκ = 0)
∝ |q|r2

pole
−|q|2r2

pol/2 . (10.23)
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FIGURE 10.5: The polaronic wavefunctions of the hole and electron polarons in LiF. A linecut of the
wavefunctions are given for the hole (a) and electron (c) polarons with the sizes of each polaron given
in the title of the panel. The sizes of the polarons are determined via the full-width half-maxima of
|Ψpol(r)|2 along a representative dimension of the polaron, in this case the [111] direction. The 2D cuts
of the wavefunctions are given in panels (b) and (d) for the hole and electron polarons respectively. The
wavefunctions in (b) and (d) are generated by projecting the wavefunction along the [111] plane, with the
points spanning the plane generated by the [1− 10] and [−101] directions.
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FIGURE 10.6: Atomic displacements of the hole (a) and electron (b) polarons in LiF. Displacements less
than 10−3 Å are not rendered for clarity. The displacements of the hole polaron are magnified 3×, and
are computed for a 4× 4× 4 supercell, while the displacements of the electron polaron, computed on a
14× 14× 14 supercell, are rendered to scale. Both supercells are viewed from the [111] direction.

In this instance, the electron-polaron-diffuse scattering qualitatively matches the point

defect model indicated by the Gaussian-like distribution of atomic displacements (see

Figure 10.6) about the charge trapping center. We show the linecuts along the |ΓW| path

for the electron polaron in both IZG+pol and Ipol in Figure 10.7g, where the fit to the point

defect model extracts values of 12− 14Å, matching closely the true value of 8.56Å. We

conclude that a polaron, which extends over many unit cells so as to scatter strongly,

may have a diffuse-scattering signature of an increase in intensity in a ring about the

Bragg peak. We will show, however, that there are other linear combinations of atomic

displacments (occupation distribution functions of phonons) that can also provide

such an annular momentum dependence to diffuse scattering images, concluding that

polaronsmay yield rings in diffuse scattering images, but not all rings in diffuse scattering

images result from polarons.
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FIGURE 10.7: Polaron-diffuse scattering in LiF. All diffuse scattering patterns are for scattering in the [111]
direction of the FCC lattice, thus yielding six-fold symmetry. The exact diffuse scattering intensity from
Eq. (5.16) is given in panel (a) with the high symmetry points of the BZ from the [111] projection labelled,
and the ZG scattering intensity is in panel (b). The static polaron scattering intensity from Eq. (10.16)
is given for the hole polaron in panel (c) and for the electron polaron in panel (d), with the inclusion of
thermal effects via the ZG displacements in Eq. (10.17) in panels (e) and (f) respectively. The differential
diffuse intensity, given by ∆I = IZG+pol − IZG, for the hole and electron polarons are given in panels (g)
and (f) respectively. Inset in these panels are the average of the first-order reflections across the entire BZ.
Panel (g) gives the linecut of relative differential intensity for the electron polaron, with the radius of the
polaron determined via the point defect model shown.
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10.4 INVESTIGATION OF POLARONS IN Pnma SNSE

Note 10.2!
Calculations on SnSe used the same computational setup as previously, again

using norm-conserving Troullier Martins pseudopotentials [187] and the Perdew-

Burke-Ernzerhof generalized gradient approximation for the exchange-correlation

functional [188]. We used an energy cutoff of 60Ry, and an 8× 16× 16Monkhorst-

Pack k-grid for the electronic structure calculations. Second-order force constants

were computed using density functional perturbation theory on a 4× 8× 8 q-grid.

A vdW dispersion correction was applied to account for interlayer coupling using

the D3 approach of Grimme [228], including three-body terms for the electronic

calculations, and using Becke-Johnson damping for the lattice calculations to

ensure the dispersion correction does not diverge at small distances [229, 230].

To account for the divergence of the EPCmatrix elements at q→ Γ, the EPCmatrix

elements were truncated at 10th nearest neighbor interactions (real-space cutoff

of 4.69Å, momentum-space cutoff of 1.34Å−1) by setting the value of the EPC-

prepared hot phonon distribution gqν to the average value of the corresponding

nearest neighbors at the momentum cutoff for |q| < |qmin|. Image renders of gqν

were obtained via Wannier-interpolation from the original 4× 8× 8 q-grid onto

a 1× 16× 16 q-grid, with subsequent linear nearest-neighbor interpolation onto

128× 128 q-grid. Likewise, the polaron weights Ank and Bqν as well as the ZG

displacements were explicitly solved on an 8× 16× 16 k- and q-grids.

We obtain the electron and phonon weights given in Figure 10.8, and find that neither

the electronic system nor the vibronic system contribute strongly to either the hole or

electron polarons. The formation energies are extremely small, given by −0.640 µeV

and −2.453 µeV for the hole and electron polarons respectively. The energies given

(tabulated in Table 10.2) suggest that there is no energy to be gained by deforming the
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Energy (µeV) Hole Electron

Eigenvalue 1.280 −4.907

Phonon contrib −0.640 −2.453

Electron contrib 0.000 0.000

Formation energy −0.640 −2.453

TABLE 10.2: The associated energies of each polaron determined by Eq. (10.12b) in SnSe for an 8× 16× 16
supercell. Note that the units are in µeV unlike Table 10.1.

FIGURE 10.8: Polaron electronic and vibrational weights given in Eq. (10.11). The electronic band structure
and phonon dispersions are shown. The thickness of the bands at that particular point in the band is
directionally proportional to the magnitude of the weights. Due to the extremely delocalised polarons
found in SnSe, the electronic weights Ank, given by the yellow coloration on the bands, are magnified
by 50, and the vibrational weights Bqν, given by the dark red coloration on the phonon dispersions, are
magnified by 100. The weights are given for the electron system and phonon system for the hole polaron
in (a) and (b), and for the electron polaron in (c) and (d). For the electronic weights, the bands included in
the self-consistent calculation are those encompassed within the appropriate shaded region (dark blue for
valence states in the hole polaron, maroon for conduction states in the electron polaron). The electronic
bands have the band-gap region shaded in orange.
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FIGURE 10.9: Real-space wavefunctions of the hole (a) and electron (b) wavefunctions in SnSe projected
along the [001] axis and rendered along the stacking and zigzag directions. The severe delocalisation of
the polaron is clear from the extent of these wavefunctions over the entirety of the supercell with uniform
intensity (periodic between unit cells) along any given linecut across the computed region.

lattice around an additional or missing charge (charge trapping) in the material, resulting

in a spatially delocalised polaron. This is consistent with a recent theoretical study that

determined only the electron polaron is suspected to exist, but with a spatial extent in

each direction on the order of 102 − 103Å [231]. The lack of a spatially confined polaron

in such a polar material we ascribe to the immense dielectric screening of the charges

(large delocalisation length), seen by the computed dielectric constant ǫ∞ = 19.6. Yet,

despite the apparent delocalisation of the polaron and lowbinding energy, it is unlikely to

completely exclude a possible influence of the polarons in UEDS with recently reported

sensitivity [84]. We therefore proceed to validate their effects based on ab-initiomethods.

Not only did previous experimental work see an annular momentum dependence

to the diffuse scattering, but it saw intensity anisotropy with respect to the crystal

axes which the authors attributed to various polaronic-like distortions in each direction

following photoexcitation. We have rigorously shown that polarons are likely to not
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FIGURE 10.10: Polaron scattering in the room temperature phase of SnSe. Figures (a) - (c) show the
differential diffuse scattering patterns resulting from the differences of Eq. (10.17) and Eq. (5.22) for the hole
polaron (a), the electron polaron (b), and the linear superposition of electron and hole polarons (c). Panels
(d) - (g) show the absolute intensity using the formalisms in Eqs. (5.16), (5.22) and (10.17) respectively for
thermal equilbrium (d)-(e) and for the polaron scattering of the hole and electron polarons (f )-(g). Panels
(h)-(i) give the histograms of the atomic displacements resulting from the polarons. The hole polaron
corresponds to a compression of the accordion axis, reducing the Sn-Se-Sn bond angle, while the electron
polaron tries to increase this angle, as well as twist the accordion into the zigzag direction.
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exist in this material, so how do we explain this intensity anisotropy? The exact [100]

diffuse scattering pattern of Pnma-SnSe is given in Figure 10.10a. Equation (5.16) already

solves one outstanding question among previous studies in SnSe to date: the origin of

the intensity anisotropy in BZs with respect to the different crystal axes. In short, the

exponent of the DW factor, directly related to the anisotropic atomic displacements

tensor [232] from Eq. (5.24), is different for each of these directions (see Table 10.3). As

the displacements tensor is greater for Q ‖ c than Q ⊥ c, and since both elastic and

inelastic scattering are directly proportional to the exponential of the DW factor, the

diffuse scattering has higher amplitude forQ ⊥ c thanQ ‖ c.

The resulting patterns are the polaron diffuse scattering are shown in Figure 10.10. We

find there is only a simple modulation of the crystal structure factor resulting from the

severe delocalisation of the polaron. The atomic displacements are therefore distributed

more or less uniformly throughout the supercell. The features are contained to the Bragg

peaks, with little extent into the diffuse regime, indicating that the small displacements

from the polaron modulate only the geometric structure factor of the crystal. The

resulting atomic displacements of the hole polaron (the scattering of which is given in

Figure 10.10b) try to compress the Sn-Se bonds and elongate the Se-Sn bonds at the top

and bottom of the accordion, trying to straighten the accordion direction as in the high

temperature Cmcm phase, see Figure 10.11. The electron polarons (the scattering of which

is given in Figure 10.10c) do the opposite motion, with the addition of also twisting the

accordion about its central axis. While the determination of polaron weights relied on a

BE distribution of phonons, the inability of the material to form a polaron in equilibrium

casts doubts on the ability of mechanisms, like EPC, to create the specific distribution

of phonons required to form a polaron quasiparticle in the nonequilibrium regime.

Given that neither electron nor hole polarons are found to exist in SnSe, and that

Pnma-SnSe has only very weakly bound excitons [233], we can exclude the possibility that

electron-hole pairs will induce polaronic signatures in UEDS. We determine the effect of
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FIGURE 10.11: Representative polaron displacements in SnSe in the room temperature phase. The atomic
displacements for the hole (a) and electron (b) polarons, viewed along the b-crystal axis. The arrows
indicate the direction of displacement, and are not drawn to scale. The hole polaron results in an only a
straightening of the layer in the armchair direction, while the electron polaron twists the atoms as well.

this “exciton-polaron” as a linear superposition of the atomic displacements resulting

from the electron and hole polarons. While this approach overestimates in intensity

the diffuse scattering, it does indeed fail to replicate the experimental diffuse scattering

pattern, see Figure 10.10. We safely conclude that there are no polaron signatures in

SnSe.

The absolute scattering intensities of the thermal equilibrium, hole polaron, and

electron polaron conditions are given in Figure 10.10d-g, with histograms of the polaronic

displacements in Figure 10.10h-i. A representative unit cell showing the calculated polaron

displacements is shown in Figure 10.11.
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Sn atomic index USnk,αα′ Se atomic index USek,αα′

1




0.01539113 0.00000000 0.00038529

0.00000000 0.01285731 −0.00000000

0.00038529 −0.00000000 0.01464373


 1




0.01824479 0.00000000 −0.00387067

0.00000000 0.01575535 −0.00000000

−0.00387067 −0.00000000 0.01938273




2




0.01539113 0.00000000 −0.00038530

0.00000000 0.01285731 −0.00000000

−0.00038530 −0.00000000 0.01464373


 2




0.01824479 0.00000000 0.00387067

0.00000000 0.01575535 −0.00000000

0.00387067 −0.00000000 0.01938273




3




0.01539113 0.00000000 −0.00038530

0.00000000 0.01285731 −0.00000000

−0.00038530 −0.00000000 0.01464373


 3




0.01824479 0.00000000 0.00387067

0.00000000 0.01575535 −0.00000000

0.00387067 −0.00000000 0.01938273




4




0.01539113 0.00000000 0.00038529

0.00000000 0.01285731 −0.00000000

0.00038529 −0.00000000 0.01464373


 4




0.01824479 0.00000000 −0.00387067

0.00000000 0.01575535 −0.00000000

−0.00387067 −0.00000000 0.01938273




TABLE 10.3: The values of the anisotropic displacement tensor for each atom in the unit cell, given by Eq. (5.24) of the main text in units of Å2.
We note that for all atoms the b-axis row is smaller in magnitude than the c-axis row, which implies scattering forQ ‖ b is larger than Q ‖ c as in
Section 10.4.
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10.5 DISSECTING EPC IN Pnma

To further unravel the role of EPC in SnSe via UEDS, we aim to envisage the EPC strength

as a function of phonon momentum q. While in general describing the coupling of

a particular interband transition to the phonon system, we focus here on a specific

coupling: intraband hole scattering in the upper most valence band. By isolating this

particular transition (valence to valence (val), given by the band indexing m = val = n)

and integrating over electronic degrees of freedom, we can identify a unique coupling of

hole scattering to the entirety of a given phonon mode:

gqν ,
∫

BZ

d3k

(2π)3
gν
val-val(k, q) (10.24)

which can now serve as a relative contribution of a particular phononmode to the diffuse

scattering pattern following this intraband transition. We focus on the intravalence hole

scattering process, although the intraconduction electron scattering process yields

qualitatively similar results, see Figure 10.12.

We can now determine the amount each mode (via Eq. (5.10)) will be occupied and

thus diffract due to hole scattering by weighting the modes with Eq. (10.24):

I1(Q) = ∑
ν

Iν
1 (Q) −→ ∑ν gν(Q)Iν

1 (Q)

∑ν gν(Q)
(10.25)

where the extension of the weights gqν to the entire range of scattering vectors gν(Q)

is done by tiling q → Q = q + G for G a reciprocal lattice vector. The unweighted

scattering patterns of Eq. (5.10) show how a thermal equilibrium (BE) distribution of

phonons scatters, while the weighted patterns of Eq. (10.25) show how the distribution of

hot phonons, as preparedby the phonon-momentumdependence of the EPC,will scatter.

Equation (10.26) shows the differences in scattering between these two distributions,

where the differential diffuse scattering in Figure 10.13 that results from the EPCweighting
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FIGURE 10.12: Average EPC weighting for the intravalence hole scattering process (a) and for the intra-
conduction electron scattering process (b). Both show qualitatively the same features, namely annular
pattern around zone center as expected for a highly polar lattice. The linecuts in each dimension are given
along each of the primary axes. While nearly identical, the hole weights are much more annular than the
electron weights around Γ, more consistent with experimental diffuse scattering results, while the electron
weights are more Gaussian distributed.

is the experimental observable reported by UEDS immediately following photoexcitation.

∆IEPC =

(
∑ν gν(Q)Iν

1 (Q)

∑ν gν(Q)

)

︸ ︷︷ ︸
EPC-prepared
hot distribution

−
(

∑
ν

Iν
1 (Q)

)

︸ ︷︷ ︸
BE equilibrium
distribution

. (10.26)

Remarkably, the resulting differential pattern shows excellent agreement with experimen-

tal diffuse scattering images in its momentum dependence around Γ [118, 143]. Namely,

the modes that dually scattering strongly and are coupled well to the intraband hole

transitions result in an annular momentum dependence, centered at zone center. Both

Refs [118, 143] interpret the resulting data as being indiciative of a large scale real-space

dislocation of the atomic positions, which we dismiss from the previous polaron cal-

culations. These studies discredited EPC as the cause of the momentum dependence

of the diffuse scattering. However, this analysis suggests that the underlying cause of

each interpretation, polaron formation or domain fracture respectivey, is the expected
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FIGURE 10.13: EPC-weighted differential diffuse scattering pattern resulting from the intraband hole
scattering within the valence manifold compared to equilibrium diffuse scattering. The patterns show
a clear annular momentum dependence consistent with previous experimental ultrafast scattering data
[118].

scattering from a hot distribution of phonons as prepared by the calculated EPC.
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10.6 ANHARMONIC COUPLING

One of the most interesting features about SnSe is the stability of the lattice with respect

to the interatomic forces. As a specific example, the lowest energy mode of Ag symmetry

(in-plane polarized) freezes at the phase transition, and decomposes into an optical

mode at Γ and an acoustic mode at Y in the Cmcm phase. The coupling between these

two modes is entirely anharmonic, and in fact each of the atomic configurations of SnSe

are extremely anharmonic. Here, anharmonicmeans that second-order force constants

become entirely insufficient to completely describe the state of the lattice; without higher

order interactions, the material would not be stable! Fourth order and higher processes

are mainly relevant at higher temperatures or for phase transition and thermal expansion

studies [234]. Calculation has been done before of the quartic terms, but remains a

cumbersome and expensive calculation [235].

Note 10.3!
The fourth-order force constants Φ

αβγθ
ijkl will necessitate 100s of explicit supercell

calculations (corresponding to dense Monkhorst-Pack grids in q-space) to achieve

reasonable accuracy, providing an extreme rate limiting step that makes these

calculations tedious and expensive.

The higher-order force constants were computed using the finite-displacement

method on a 2× 4× 4 supercell including up to 10th nearest neighbor interactions,

resulting in 58 triplet equivalence classes for a total of 448 DFT runs for third-

order force constants, and 154 quartet equivalence classes for a total of 7816 total

DFT runs for the fourth-order force constants. The anharmonic scattering rates

were computed on a 4× 8× 8 q-grid, using the complete iterative solution of the

Boltzmann transport equation for the 3ph processes [55] while the 4ph processes

were evaluated in the relaxation time approximation. The anharmonic calculations,



174 POLARON-DIFFUSE SCATTERING

Y T Z U X Z Y
5i

0

5

10

15

20

25
q

 [m
eV

]
CMCM PNMACMCM PNMA

FIGURE 10.14: Phonon dispersions of SnSe in both the Pnma and Cmcm phases. The imaginary frequencies
of theCmcm indicate that these phonons are not stable, and thus require anharmonic couplings to stabilize
the lattice at equilibrium.

including the higher-order force constant calcualtions, utilized modified versions

of the FourPhonon package [235]. Divergences at Γ (where applicable) were treated

in the sameway as the EPCweights, and image renders used the same interpolation

scheme and density for the anharmonic q-grid.
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10.6.1 Expanding anharmonicity to the fourth order

In these fourth-order calculations, in a completely analagous description to that of the

third-order phase space in Eq. (4.20), we can write the transition probability matrices as

the Fourier transform of the fourth-order force constants:
(

Ψνν′ν′′ν′′′
qq′q′′q′′′

)±±
= ∑

ijkl
∑

αβγθ

Φ
αβγθ
ijkl

(εi
qν)

α(ε
j
±q′ν′)

β(εk
±q′′ν′′)

γ(εl
−q′′′ν′′′)

θ

√
µiµjµkµl

e±iq′·Rj e±q′′·Rk e−q′′′·Rl

(10.27)

where the fourth-order force constantsΦ
αβγθ
ijkl contribute the latest term in the expansion

of the crystal potential energy:

EDFT = EDFT
0 +

1

2 ∑
ij

αβ

Φ
αβ
ij rα

i r
β
j +

1

3! ∑
ijk

αβγ

rα
i r

β
j r

γ
k +

1

4! ∑
ijkl

αβγθ

Φ
αβγθ
ijkl rα

i r
β
j r

γ
k rθ

l + · · · (10.28)

We can determine these fourth order force constants from finite-difference again:

Φ
αβγθ
ijkl =

∂4EDFT

∂rα
i ∂r

β
j ∂r

γ
k ∂rθ

l

≈ 1

2h


 ∂3EDFT

∂r
β
j ∂r

γ
k ∂rθ

l

(rα
i = h)− ∂3EDFT

∂r
β
j r

γ
k rθ

l

(rα
i = −h)


 (10.29)

where the 3rd order terms can be expanded according to Eq. (4.20c). Symmetry ar-

guments can be made to reduce the computational cost of these force constants by

recognizing that Φ
αβγθ
ijkl = Φ

αβθγ
ijlk = · · · (providing 24 equality constraints). Further, to

take advantage of crystal symmetries, the following can be shown [235] to hold:

Φ
α′β′γ′θ′

Tb(i)Tb(j)Tb(k)Tb(l)
= ∑

αβγθ

Tα′αTβ′βTγ′γTθ′θΦ
αβγθ
ijkl (10.30)

where, for point-group and translation operators T and b, Tb(i) represents the the map-

ping of atom i under the given operation. The symmetry operators further must satisfy

∑α Tα′αRα
i + bα′ = Rα′

Tb(i)
.

10.6.2 Anharmonicity in SnSe

While EPCmight readily explain the scattering intensity as a function of phononmomen-

tum, the resulting dynamics following photoexcitation will be strongly dependent on
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anharmonic effects, required by the fact that the lattice must thermalize in the long-time

limit. To this aim, given that SnSe is a strongly anharmonic material, we strive to explore

the influence of anharmonicities on UEDS via three-phonon (3ph) and four-phonon

(4ph) scattering processes.

We start by determining expressions for the scattering rates associated with 3ph and

4ph scattering processes, where we allow for absorption (+) and emission (-) processes

in the 3ph picture, and for total absorption (+ +), partial transfer (+ -), and total emission

(- -) processes in the 4ph picture. We can derive expressions for the scattering rate in the

RTA from 3ph processes [52] and from 4ph processes [235] as:

1

τ
3ph
qν

=
h̄π

4 ∑
ν′ν′′

∫
dq′

ΩBZ

{ ∣∣∣Ψνν′ν′′
qq′q′′

∣∣∣
2

+
(nq′ν′ − nq′′ν′′)δ(ωqν + ωq′ν′ −ωq′′ν′′)δ

G
q+q′−q′′

+
∣∣∣Ψνν′ν′′

qq′q′′

∣∣∣
2

−
1

2
(nq′ν′ + nq′′ν′′ + 1)δ(ωqν −ωq′ν′ −ωq′′ν′′)δ

G
q−q′−q′′

}

(10.31)

1

τ
4ph
qν

=
h̄2π

8 ∑
ν′ν′′ν′′′

∫
dq′ dq′′

Ω2
BZ

{

∣∣∣Ψνν′ν′′ν′′′
qq′q′′q′′′

∣∣∣
2

++

1

2
(1 + nq′ν′)(1 + nq′′ν′′)nq′′′ν′′′δ(ωqν + ωq′ν′ + ωq′′ν′′ −ωq′′′ν′′′)δ

G
q+q′+q′′−q′′′

∣∣∣Ψνν′ν′′ν′′′
qq′q′′q′′′

∣∣∣
2

+−
1

2
(1 + nq′ν′)nq′′ν′′nq′′′ν′′′δ(ωqν + ωq′ν′ −ωq′′ν′′ −ωq′′′ν′′′)δ

G
q+q′−q′′−q′′′

∣∣∣Ψνν′ν′′ν′′′
qq′q′′q′′′

∣∣∣
2

−−
1

6
nq′ν′nq′′ν′′nq′′′ν′′′δ(ωqν −ωq′ν′ −ωq′′ν′′ −ωq′′′ν′′′)δ

G
q−q′−q′′−q′′′

}
.

(10.32)

The previous hypothesis of polaron / domain formation in this material was based on the

premise that anharmonic decay, in the limit of momentum-conserving scattering, could

not explain the momentum anisotropy in the transient UEDS signals. To quantify the

validity of this assumption, we enumerate, at the evaluation of each of the integrands in

Eqs. (10.31) and (10.32), whether that process describes normal or Umklapp scattering by

using the first BZ image of each q point, q̂. For 3ph processes (and analagously for 4ph

processes), a±process is considered tobenormal if q̂± q̂′ = q̂′′, andUmklappotherwise.
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By using the average number of processes for each type of scattering across the BZ

for each mode, we determine that the Umklapp processes (averaging over the modes)

actually account for 65% of the anharmonic scattering in this material, invalidating the

assumption of solely momentum-conserving decay channels in previous studies. This

necessitates a closer look at the behaviour of anharmonic effects in this material as a

possible explanation for its behaviour following photoexcitation.

Weighting the diffuse scattering by the EPC strengths as in Eq. (10.26) was an effective

measure of early time diffuse scattering immediately following photoexcitation and

at the onset of hot carrier relaxation and scattering. The long-time behaviour of the

lattice, however, will be dominated by anharmonic decay channels so that the lattice self-

thermalizes. In order to quantify the effects of anharmonicity, we define the momentum-

resolved anharmonic scattering rates Γanh
qν as the weights through which anharmonic

effects will manifest themselves in the mode-resolved diffuse scattering patterns Iν
1 (Q).

This scattering rate results from all anharmonicities of the lattice to fourth order; yet as

Sn (Se) has 10 (5) stable isotopes in nontrivial natural abundances, we also include the

effects of isotope scattering in the anharmonic weights [236]:

Γiso
qν =

πωqν

2 ∑
ν′

∫
dq′

ΩBZ
∑
κ

{[

∑
s

as
κ [1− Ms

κ/〈Ms
κ〉]

2

]

︸ ︷︷ ︸
gκ

×
∣∣∣ε∗qνκ · εq′ν′κ

∣∣∣
2

δ(ωqν −ωq′ν′)

}

(10.33)

where gκ is the Pearson coefficient of the variations in isotope mass Ms
κ of the κth atom

and its sth isotope, with 〈Ms
κ〉 the average isotope mass given relative abundances as

κ. We

then can determine the total anharmonic lifetime of the phonons via Matthiessen’s rule

[237], as these scattering events are independent:

Γanh
qν ,

1

τanh
qν

=
1

τ
3ph
qν

+
1

τ
4ph
qν

+
1

τanh
qν

= Γ
3ph
qν + Γ

4ph
qν + Γiso

qν . (10.34)

Following photoexcitation, experimental work showed in increase in phonon occupancy

at wavevectors q ∼ Γ, as we have explained in Section 10.5, with a rise time of ∼ 300 fs.
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Simultaneously, phonon occupancy rose, slowly but consistently, for wavevectors q ≁ Γ.

To this point, we inspect the anharmonic scattering rates in an annulus about zone

center, specifically those modes 0.1Å−1 < |q| < 0.2Å−1 which is the same range of

wavevectors used for “zone-center” modes in Ref [118]. Inspecting the value of the

anharmonic lifetimes within this region across the phonon modes yields an anharmonic

decay rate of zone-center modes to be 6.43ps, very closely matching the experimental

decay rate of ∼ 5ps. We visualize the mode-resolved phase spaces and anharmonic

lifetimes in Appendix B. Previous scattering studies posited that theQ-dependence of

the diffuse intensity at long times was indicative of the formation of a small polaron

or local domain. Yet, given the previous analysis of EPC in the material, we explain

the long-time behaviour by the constant anharmonic decay of zone-center modes into

multiple phonons at higher wavevector in such a way that energy and momentum are

conserved. This arises from the strong degree of anharmonicity in this material, where

the immense available phase space for 3ph processes dominates for phonon energies

where the phonon DOS is minimal, namely for q ∼ Γ, while nearly every phonon across

the BZ has allowed 4ph scattering processes, aligning the 4ph phase space as a function

of phonon energy with the pDOS (c.f. Figure 10.15). Taken together with the EPC analysis,

we conclude there are no polaron diffuse scattering signatures in SnSe.
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FIGURE 10.15: Anharmonic phase spaces in SnSe for three-phonon (left) and four-phonon (right) processes.
The phonon DOS is rendered on both panels to illustrate the dominant regions of the phonon dispersion
for each type of process.

10.7 OUTLOOK

We start by describing polaron formation within the basis of Kohn-Sham orbitals, and

phonon normal modes. Such a description allows for the rapid identification of diffuse

scattering signatures of polarons within Laval-Born-James theory, as well as relates

experimentally accessible diffuse scattering images directly to the underlying envelope

of the polaron wavefunction. We extend the formalism to include finite-temperature

phonon-assisted scattering, and validate the approach on a prototypical ionic insulator

LiF. Here, we discover that the electron polaron, with large spatial extent, can be rea-

sonably described as a point defect in the material, and admits an annular momentum

dependence to the resulting scattering about zone center. We then apply these analyses

on the alleged polaronic material SnSe, where we find polaron formation is unlikely due

to both the extreme delocalization of the polaron wavefunctions and the trivial polaron

formation energies. We reconcile previous ultrafast scattering data on SnSe with more
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conventional explanations. Namely, the intensity anisotropy with respect to Brillouin

zones aligned with various crystal axes is explained by anisotropy in the Debye-Waller

factors along each crystal axis. Further, the annular diffuse scattering signatures from

experimental data are captured by the expected phonon momentum dependence of the

electron-phonon coupling matrix elements. We show that the experimentally measured

decay of zone-center phonon occupation is explained by the expected anharmonic life-

times in the material resulting from 3ph and 4ph processes. The ab-initio insights of this

work allow for a new experimental probe of polarons in systems where they exist, and

have allowed for the reconciliation of previous conflicting reports in the thermoelectric

SnSe.
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11
Conclusion

While advances in recent years with respect to ultrafast laser light generation, electron

beamline manipulation, RF compression techiques, and electron imaging detectors have

progressed TEM far, there are still systems at the frontier of condensed matter science

that leave much to discover. The progression of UED and UEDS theory to explore novel

systems, such as monolayers and thermoelectrics, would not have been possible without

these many advances in various technologies and theories.

Having started with the creation of monolayer samples with large in-plane area, we

showed that currently existing instrumentation is able to detect, with extreme sensitivity,

changes in phonon occupancy and atomicMSD in even 2D samples, where SNR could not

be more limited. The development of Laval-Born-James (LBJ) theory to exactly describe

transients in diffuse scattering signatures further opened up avenues for continued

exploration of other exotic systems, without the attention to detail required to operate

such an electron microscope column.

To continue pushing the bounds of what electron microscopy can do, we showed

that distinct patterns in the inelastic phonon diffuse scattering of a material can even

be sensitive enough to describe various mechanisms of charge carrier valley depolariza-

tion, as well as observe chiral phonons by their direct hallmark of increase in phonon

183
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occupancy at the K valley of monolayer TMDs.

Finally, we illustrated that the combination of EPC calculations and the determination

of anharmonic scattering processes can, without a full numerical solution of the TDBE,

completely describe diffuse scattering data in an exotic system, SnSe. Further, the unique

signatures of polaron formation on the diffuse scattering pattern were shown. While the

polaron was found to unfortunately not exist in SnSe, the technique will hopefully be

applied to other systems such as lead-halide perovskites or LiF to continue to probe their

unique properties. The ab-initio insight from these results will, hopefully, inspire further

works to continue to explore the range of possiblities afforded by UED and UEDS.



A
Appendix - Multiple Scattering Cross Section

The scattering form factor for secondary scattering f (2)(Q) given in Lemma 2.1 is:

f (2)(k f , ki) = −
meL3

2πh̄2
〈k f |V̂

1

Ei − Ĥ0 + iǫ
V̂|ki〉

= −meL3

2πh̄2

∫
dx′

∫
dx′′〈k f |x′〉V(x′)〈x′ 1

Ei − Ĥ0 + iǫ
x′′〉V(x′′)〈x′′|ki〉

=

(
me

2πh̄2

)2 ∫
dx′

∫
dx′′e−ik f ·x′V(x′)

(
ei|ki||x′−x′′|

|x′ − x′′|

)
eiki·x′′V(x′′) (A.1)

Note 1.1!
In the derivation of Eq. (A.1) we’ve transformed the propagator into a representa-

tion with two complete basis sets, as well as utilised the result from the derivation

of the Lippmann-Schwinger Equation, namely that

〈x′| 1

Ei − Ĥ0 + iǫ
|x′′〉 = − me

2πh̄2

ei |ki||x′−x′′|

|x′ − x′′|

We can directly compare the corresponding scattering cross section by computing an

upper bound to determine the relative liklihood that such scattering occurs. To this

aim, we make the approximation that transmission electron scattering experiments

require thin (∼10s of nm thick) samples, so multiple electron scattering from the same
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atom is very unlikely, and so the integrals approach zero as |x′ − x′′| → 0. As such, the

integral is effectively split into
∫

dx′
∫

dx′′ →
∫

dx′
[∫
|x′−x′′|≤a dx′′ +

∫
|x′−x′′|>a dx′′

]
, with

a the interatomic lattice spacing. We then write the scattering cross section as:

dσ2

dΩ
<

1

a

∣∣∣∣∣

(
me

2πh̄2

)2 ∫
dx′

∫
dx′′e−ik f ·x′V(x′)eiki·x′′V(x′′)

∣∣∣∣∣

2

<
1

a

∣∣∣∣∣

(
me

2πh̄2

)2 ∫
dx′e−ik f ·x′V(x′)

∫
dx′′eiki·x′′V(x′′)

∣∣∣∣∣

2

<
1

a

∣∣∣∣
me

2πh̄2

∫
dx′e−ik f ·x′V(x′)

∣∣∣∣
2 ∣∣∣∣

me

2πh̄2

∫
dx′′eiki·x′′V(x′′)

∣∣∣∣
2

<
1

a

(
dσ1

dΩ

)2

(A.2)

As most materials have lattice constants [a] ∼ Å, the relative liklihood of multiple scatter-

ing is therefore low.



B
Appendix - EPC and anharmonic weights in

SnSe

The EPC weights used to produce the diffuse scattering pattern in Figure 10.13 is given in

Figure B.1, while the anharmonic weights are given in Figures B.2 to B.5. The anharmonic

3- and 4- phonon phase spaces are given in Figures B.6 and B.7.
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FIGURE B.1: Intravalence hole scattering coupling to each phononmode as a function of phononmomenta
gqν. Each panel title gives the minimum and maximum coupling energy across the BZ for the given branch.
Phonon modes are sorted by increasing energy at Γ, and are indexed left to right, then top to bottom.
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FIGURE B.2: Anharmonic phonon lifetimes taken as a reciprocal sum of lifetimes from 3ph scattering, 4ph
scattering, and isotope scattering. Each panel title gives the minimum and maximum phonon lifetime
across the BZ for the given branch. Phonon modes are sorted by increasing energy at Γ, and are indexed
left to right, then top to bottom. Inset is the annular region defined to be “zone-center”.
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FIGURE B.3: Anharmonic phonon lifetime contribution from 3ph processes. Each panel title gives the
minimum and maximum phonon lifetime across the BZ for the given branch. Phonon modes are sorted
by increasing energy at Γ, and are indexed left to right, then top to bottom. Inset is the annular region
defined to be “zone-center”.



APPENDIX - EPC AND ANHARMONIC WEIGHTS IN SNSE 191

0.5

0.0

0.5

Q
z[Å

1 ]
12.48, 112.14 ps 12.38, 99.95 ps 13.15, 59.32 ps 13.44, 139.02 ps

0.5

0.0

0.5

Q
z[Å

1 ]

13.67, 155.12 ps 14.34, 111.57 ps 12.51, 147.69 ps 12.51, 98.96 ps

0.5

0.0

0.5

Q
z[Å

1 ]

12.10, 70.31 ps 12.58, 108.15 ps 11.83, 109.24 ps 12.03, 68.97 ps

0.5

0.0

0.5

Q
z[Å

1 ]

5.18, 42.63 ps 5.18, 39.54 ps 5.68, 37.48 ps 5.17, 35.32 ps

0.5

0.0

0.5

Q
z[Å

1 ]

5.00, 33.65 ps 4.95, 33.58 ps 4.86, 29.50 ps 4.81, 30.48 ps

0.5 0.0 0.5
Qy[Å 1]

0.5

0.0

0.5

Q
z[Å

1 ]

5.38, 33.88 ps

0.5 0.0 0.5
Qy[Å 1]

5.60, 33.39 ps

0.5 0.0 0.5
Qy[Å 1]

5.36, 54.25 ps

0.5 0.0 0.5
Qy[Å 1]

5.36, 66.38 ps

4ph
q

FIGURE B.4: Anharmonic phonon lifetime contribution from 4ph processes. Each panel title gives the
minimum and maximum phonon lifetime across the BZ for the given branch. Phonon modes are sorted
by increasing energy at Γ, and are indexed left to right, then top to bottom. Inset is the annular region
defined to be “zone-center”.
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FIGURE B.5: Anharmonic phonon lifetime contribution from isotope scattering. Each panel title gives the
minimum and maximum phonon lifetime across the BZ for the given branch. Phonon modes are sorted
by increasing energy at Γ, and are indexed left to right, then top to bottom. Inset is the annular region
defined to be “zone-center”.
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FIGURE B.6: Weighted three-phonon phase space in SnSe. Each panel title gives the minimum and
maximum phase space magnitude across the BZ for the given branch. Inset is the annular region defined
to be “zone-center”.
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FIGURE B.7: Weighted four-phonon phase space in SnSe. Each panel title gives theminimum andmaximum
phase space magnitude across the BZ for the given branch. Inset is the annular region defined to be
“zone-center”.
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